表面と真空
Online ISSN : 2433-5843
Print ISSN : 2433-5835
特集「2020年日本表面真空学会学術講演会特集号Ⅱ」
ニューラルネットワークポテンシャルによる金–リチウム合金化過程の解析
清水 康司 Elvis F. Arguelles李 文文安藤 康伸南谷 英美渡邉 聡
著者情報
ジャーナル フリー

2021 年 64 巻 8 号 p. 369-374

詳細
抄録

In this paper, we report construction of neural network potentials (NNPs) of Au-Li binary systems based on density functional theory (DFT) calculations and analyses of alloying properties. To accelerate construction of NNPs, we proposed an efficient method of structural dataset generation using the symmetry function-based principal component analysis. We investigated the mixing energy of Au1-xLix with fine composition grids, which were achieved owing to the lower computational cost of NNPs. The obtained results agree well with the DFT values, where we found previously unreported stable compositions. In addition, we examined the alloying process starting from the phase separated structure to the complete mixing phase using Au/Li superlattice structures. We found that when multiple adjacent Au atoms dissolved into Li, the alloying of the entire Au/Li interface started from the dissolved region. These results demonstrate the applicability of NNPs toward miscible phase and provides the understanding of the alloying mechanism.

Fullsize Image
著者関連情報

この記事はクリエイティブ・コモンズ [表示 - 非営利 4.0 国際]ライセンスの下に提供されています。
https://creativecommons.org/licenses/by-nc/4.0/deed.ja
前の記事 次の記事
feedback
Top