The rapid advancement of software-based deep learning has led to a surge in AI applications, yet hardware limitations in silicon CMOS technology hinder performance. Consequently, interest is growing in hardware technologies and new materials for artificial neural networks (ANNs) and neuromorphic systems. Exploiting nanomaterials nonlinearity caused by spontaneous physical phenomena holds promise of reducing power consumption in AI hardware. Reservoir computing devices, derived from recurrent neural networks, play a crucial role, with material reservoir devices showcasing “material intelligence.” Tailored nanomaterials for reservoir devices hold potential for revolutionizing AI, especially in robotics. As research progresses, focusing on device functionalization and applications, recent findings underline the significance of integrating nanomaterials into AI hardware for enhanced computational capabilities and energy efficiency.