YAKUGAKU ZASSHI
Online ISSN : 1347-5231
Print ISSN : 0031-6903
ISSN-L : 0031-6903
誌上シンポジウム
TRPCチャネルのリン酸化による心血管機能制御
西田 基宏斎木 翔太北島 直幸仲矢 道雄佐藤 陽治黒瀬 等
著者情報
ジャーナル フリー

2010 年 130 巻 11 号 p. 1427-1433

詳細
抄録

  Calcium ions (Ca2+) play an essential role in homeostasis and the activity of cardiovascular cells. Ca2+ influx across the plasma membrane induced by neurohumoral factors or mechanical stress elicits physiologically relevant timing and spatial patterns of Ca2+ signaling, which leads to the activation of various cardiovascular functions, such as muscle contraction, gene expression, and hypertrophic growth of myocytes. A canonical transient receptor potential protein subfamily member, TRPC6, which is activated by diacylglycerol and mechanical stretch, works as an upstream regulator of the Ca2+ signaling pathway required for pathological hypertrophy. We have recently found that the inhibition of cGMP-selective phosphodiesterase 5 (PDE5) suppresses agonist- and mechanical stretch-induced hypertrophy through inhibition of Ca2+ influx in rat cardiomyocytes. The inhibition of PDE5 suppressed the increase in frequency of Ca2+ spikes induced by receptor stimulation or mechanical stretch. Activation of protein kinase G by PDE5 inhibition phosphorylated TRPC6 proteins at Thr69 and prevented TRPC6-mediated Ca2+ influx. Substitution of Ala for Thr69 in TRPC6 abolished the antihypertrophic effects of PDE5 inhibition. These results suggest that phosphorylation and functional suppression of TRPC6 underlies the prevention of cardiac hypertrophy by PDE5 inhibition. As TRPC6 proteins are also expressed in vascular smooth muscle cells and reportedly participate in vascular remodeling, TRPC6 blockade may be an effective therapeutic strategy for preventing pathologic cardiovascular remodeling.

著者関連情報
© 2010 by the PHARMACEUTICAL SOCIETY OF JAPAN
前の記事 次の記事
feedback
Top