YAKUGAKU ZASSHI
Online ISSN : 1347-5231
Print ISSN : 0031-6903
ISSN-L : 0031-6903
Reviews
Efficient Synthesis of Multisubstituted Aromatic Compounds from Phenol Derivatives
Takashi Ikawa
Author information
JOURNAL FREE ACCESS

2014 Volume 134 Issue 12 Pages 1309-1317

Details
Abstract
  Phenols are abundant in nature and diverse phenols are readily available commercially at low cost. Thus, phenols can be used as the raw materials for the synthesis of valuable multisubstituted aromatic compounds by the direct activation of phenolic hydroxyl groups (C-O bond activation), followed by substitutions with other substituents. Although the derivatization of phenolic hydroxyl groups to sulfonates, such as triflates, nonaflates, tosylates and mesylates, followed by the transition-metal-catalyzed coupling reactions has been extensively investigated for this purpose, the direct C-O bond activation of phenols for subsequent functional group transformation has been a long-standing challenge in modern organic synthesis. In this review, I have summarized my recent studies on the formal direct C-O bond activation of phenols using nonafluorobutanesulfonyl fluoride (NfF) for the synthesis of multisubstituted aromatics. I have focused on the dual use of NfF, a less expensive commercially available reagent, including the tentative formation of highly reactive nonaflates from phenols and the use of the liberated fluoride ion as a nucleophile to promote the reactions of nonaflates. The following four topics are discussed: 1) palladium-catalyzed coupling reactions of phenols, 2) novel preparation of benzynes from 2-silylphenols, 3) synthesis of fluorinated aromatic compounds via the formation of benzynes, and 4) Hiyama coupling of (tert-butyldimethylsilyl)arenes activated by internal phenolic hydroxyl groups.
Content from these authors
© 2014 by the PHARMACEUTICAL SOCIETY OF JAPAN
Previous article Next article
feedback
Top