YAKUGAKU ZASSHI
Online ISSN : 1347-5231
Print ISSN : 0031-6903
ISSN-L : 0031-6903
Symposium Reviews
Recent Findings Regarding the Mechanism of Idiosyncratic Drug Toxicity
Toshihiko Ikeda
Author information
JOURNAL FREE ACCESS

2015 Volume 135 Issue 4 Pages 567-578

Details
Abstract
  Animal experiments cannot predict the probability of idiosyncratic drug toxicity; consequently, an important goal of the pharmaceutical industry is to develop a new methodology for preventing this form of drug reaction. Although the mechanism remains unclear, immune reactions are likely involved in the toxic processes underlying idiosyncratic drug toxicity: the drug is first activated into a chemically reactive metabolite that binds covalently to proteins and then acts as an immunogen. Therefore, screening tests to detect chemically reactive metabolites are conducted early during drug development and typically involve trapping with glutathione. More quantitative methods are then used in a later stage of drug development and frequently employ 14Cor 3H-labeled compounds. It has recently been demonstrated that a zone classification system can be used to separate risky drugs from likely safe drugs: by plotting the amount of each protein-bound reactive metabolite in vitro against the dose levels in vivo, the risk associated with each drug candidate can be assessed. A mechanism for idiosyncratic drug-induced hepatotoxicity was proposed by analogy to virus-induced hepatitis, in which cytotoxic T lymphocytes play an important role. This mechanism suggests that polymorphism in human leukocyte antigens is involved in idiosyncrasy, and a strong correlation with a specific genotype of human leukocyte antigens has been found in many cases of idiosyncratic drug toxicity. Therefore, gene biomarkers hold promise for reducing the clinical risk and prolonging the life cycle of otherwise useful drugs.
Content from these authors
© 2015 by the PHARMACEUTICAL SOCIETY OF JAPAN
Previous article Next article
feedback
Top