THE JOURNAL OF THE SOCIETY OF TEXTILE INDUSTRY< JAPAN (Sen-I Kogyo Gakukwaishi)
Online ISSN : 1884-2267
ISSN-L : 0911-8780
Volume 6, Issue 3
Displaying 1-4 of 4 articles from this issue
  • Masamitu Nagano, Itiro Nihei
    1940Volume 6Issue 3 Pages 99-113
    Published: March 20, 1940
    Released on J-STAGE: July 08, 2008
    JOURNAL FREE ACCESS
    1) Theoretical calculation of water vapour permeability. In Introducing the permeability, we have made the following differential equation of diffusion.
    ∂P/∂t=K•∂2P/∂X2…………………………1)
    from equation (1) _??_………2)
    from equation 2) _??_……………3)
    assuming _??_
    we found _??_
    and K=QL/(P1-P2)t…………………4)
    where, P…Water vapour pressur in the fabrics,
    t…Time in hours,
    K…Water vapour permeability of fabrics,
    X…Arbitrary thickness of fabrics,
    α, A, B, C…Constant,
    Q…The rate of evaporation in g/cm2,
    L…Thickness of fabric in cm,
    P1, P2…The vapour pressure of bo h sides of fabric.
    2) The method embloyed for permeability measurement is by determining the loss in weight, from time of distilled water contained in a weighing bottle, the top of which is covered with the fabric and sealed round the edges by wire. Conditions of temperature and relative humidity are all controlled. The figure taken as best expressing permeability is the formula 4)
    3) The experiments were performed for cotton fabrics, linen fabrics, and wool fabrics.
    The correlation between k and apparent density or porosity or thickness, were examined with the following results.
    Correlation Coefficients
    Cotton fabrics Wool fabrics.
    a) For the correlation
    between k and apparent -0.421±0.31 -0.198±0.203 density.
    b) Between k and porosity. +0.832±0.049 +0.418±0.185
    c) Between k and thickness. -0.346±0.141 -0.358±0.186
    Download PDF (822K)
  • Michiharu Negishi
    1940Volume 6Issue 3 Pages 114-119
    Published: March 20, 1940
    Released on J-STAGE: July 08, 2008
    JOURNAL FREE ACCESS
    Herr K. Nakamura (diese Zeitschr, 5, 674, 1939) hat theoretisch die folgende Beziehung zwischen dem Youngschen Modul Y, das aus der Belastung-Dehnungskurve der Textilfasern zu ermitten ist und dem Verhältnisse S der Bruchfestigkeit zur Bruch dehnung abgeleitet.
    Y=S(1+c)/(1-c)
    Auf Grund von meinem experimentellen Ergebnisse nimmt Herr K. akamura an, dass der c-Wert eine Konstante ist. Er folgert hieraus weiter, dass die Elastizität der Textilfasern durch die S-Werte vergleichbar ist.
    (1) Drückt man die Bruchdehnung wie im Falle von Herrn K. Nakamura in Prozent aus, so muss diese Beziehung wie folgt berichtigt werden.
    Y=100•S•(1+c)/(1-c)
    (2) Studiert man mein experimentelles Resultat durch (diese Zeitschr. 5, 339, 1939), so findet man, dass der c-Wert gar keine Konstante ist.
    (3) Schliesslich lässt sich weder Youngsche Modul noch Elastizitätsgrad der Textilfasern durch den S-Werte vergleichen.
    Download PDF (369K)
  • [in Japanese]
    1940Volume 6Issue 3 Pages 120-130
    Published: March 20, 1940
    Released on J-STAGE: July 08, 2008
    JOURNAL FREE ACCESS
    Download PDF (618K)
  • [in Japanese]
    1940Volume 6Issue 3 Pages 131-133
    Published: March 20, 1940
    Released on J-STAGE: July 08, 2008
    JOURNAL FREE ACCESS
    Download PDF (687K)
feedback
Top