Magnetic Resonance in Medical Sciences
Online ISSN : 1880-2206
Print ISSN : 1347-3182
ISSN-L : 1347-3182
21 巻, 1 号
20th Anniversary Issue
選択された号の論文の19件中1~19を表示しています
EDITORIAL
CONTRIBUTIONS
REVIEWS
  • Noriko Aida
    2022 年 21 巻 1 号 p. 9-28
    発行日: 2022年
    公開日: 2022/03/01
    [早期公開] 公開日: 2021/08/21
    ジャーナル オープンアクセス

    MRI interpretations of the pediatric brain are often challenging for general radiologists and clinicians because MR signals and morphology are continuously changing in the developing brain. Furthermore, the developing brain reacts differently to injuries, resulting in imaging characteristics that differ from those of the mature brain. Proton magnetic resonance spectroscopy (1H-MRS) is a non-invasive method for assessing neurological abnormalities at the microscopic level and measures in vivo brain metabolites using a clinical MR machine. In MR examinations of the pediatric brain, 1H-MRS demonstrates its powerful diagnostic capability when MRI is insufficient for diagnostic features. MRI and 1H-MRS may be complementary tools for diagnosing and monitoring diseases. However, there is currently no consensus on how to include 1H-MRS in clinical MR examinations. An overview of the clinical implementation of 1H-MRS for the assessment of early pediatric developmental brains as well as the diagnosis, prognostification, and disease monitoring of various non-neoplastic brain disorders, including neonatal encephalopathies and neurometabolic/neurodegenerative diseases, was provided herein. Qualitative and quantitative 1H-MRS is a powerful non-invasive tool for accessing various brain metabolites to confirm age appropriate peaks and detect abnormal peaks or deficient or reduced peaks, which may facilitate the identification of metabolic and neurodegenerative disorders as well as damage associated with hypoxic-ischemic encephalopathy (HIE). Moreover, 1H-MRS has potential as a biomarker for monitoring therapeutic efficacy in metabolic diseases and neonatal HIE. It also provides insights into the pathophysiologies of various disorders, which may facilitate the use of novel therapeutic approaches. Therefore, 1H-MRS needs to be included more frequently in routine clinical MR examinations of pediatric patients with neurological disorders.

  • Mai Banjar, Saya Horiuchi, David N. Gedeon, Hiroshi Yoshioka
    2022 年 21 巻 1 号 p. 29-40
    発行日: 2022年
    公開日: 2022/03/01
    [早期公開] 公開日: 2021/09/01
    ジャーナル オープンアクセス

    Osteoarthritis (OA) is one of the most prevalent disorders in today’s society, resulting in significant socio-economic costs and morbidity. MRI is widely used as a non-invasive imaging tool for OA of the knee. However, conventional knee MRI has limitations to detect subtle early cartilage degeneration before morphological changes are visually apparent. Novel MRI pulse sequences for cartilage assessment have recently received increased attention due to newly developed compositional MRI techniques, including: T2 mapping, T1rho mapping, delayed gadolinium-enhanced MRI of cartilage (dGEMRIC), sodium MRI, diffusion-weighted imaging (DWI)/ diffusion tensor imaging (DTI), ultrashort TE (uTE), and glycosaminoglycan specific chemical exchange saturation transfer (gagCEST) imaging. In this article, we will first review these quantitative assessments. Then, we will discuss the variations of quantitative values of knee articular cartilage with cartilage layer (depth)- and angle (regional)-dependent approaches. Multiple MRI sequence techniques can discern qualitative differences in knee cartilage. Normal articular hyaline cartilage has a zonal variation in T2 relaxation times with increasing T2 values from the subchondral bone to the articular surface. T1rho values were also higher in the superficial layer than in the deep layer in most locations in the medial and lateral femoral condyles, including the weight-bearing portion. Magic angle effect on T2 mapping is clearly observed in the both medial and lateral femoral condyles, especially within the deep layers. One of the limitations for clinical use of these compositional assessments is a long scan time. Recent new approaches with compressed sensing (CS) and MR fingerprinting (MRF) have potential to provide accurate and fast quantitative cartilage assessments.

  • Masami Goto, Osamu Abe, Akifumi Hagiwara, Shohei Fujita, Koji Kamagata ...
    2022 年 21 巻 1 号 p. 41-57
    発行日: 2022年
    公開日: 2022/03/01
    [早期公開] 公開日: 2022/02/18
    ジャーナル オープンアクセス

    Surface-based morphometry (SBM) is extremely useful for estimating the indices of cortical morphology, such as volume, thickness, area, and gyrification, whereas voxel-based morphometry (VBM) is a typical method of gray matter (GM) volumetry that includes cortex measurement. In cases where SBM is used to estimate cortical morphology, it remains controversial as to whether VBM should be used in addition to estimate GM volume. Therefore, this review has two main goals. First, we summarize the differences between the two methods regarding preprocessing, statistical analysis, and reliability. Second, we review studies that estimate cortical morphological changes using VBM and/or SBM and discuss whether using VBM in conjunction with SBM produces additional values. We found cases in which detection of morphological change in either VBM or SBM was superior, and others that showed equivalent performance between the two methods. Therefore, we concluded that using VBM and SBM together can help researchers and clinicians obtain a better understanding of normal neurobiological processes of the brain. Moreover, the use of both methods may improve the accuracy of the detection of morphological changes when comparing the data of patients and controls.

    In addition, we introduce two other recent methods as future directions for estimating cortical morphological changes: a multi-modal parcellation method using structural and functional images, and a synthetic segmentation method using multi-contrast images (such as T1- and proton density-weighted images).

    Editor's pick

  • Masaaki Hori, Tomoko Maekawa, Kouhei Kamiya, Akifumi Hagiwara, Masami ...
    2022 年 21 巻 1 号 p. 58-70
    発行日: 2022年
    公開日: 2022/03/01
    [早期公開] 公開日: 2022/02/15
    ジャーナル オープンアクセス

    Diffusion tensor imaging (DTI) has been established its usefulness in evaluating normal-appearing white matter (NAWM) and other lesions that are difficult to evaluate with routine clinical MRI in the evaluation of the brain and spinal cord lesions in multiple sclerosis (MS), a demyelinating disease. With the recent advances in the software and hardware of MRI systems, increasingly complex and sophisticated MRI and analysis methods, such as q-space imaging, diffusional kurtosis imaging, neurite orientation dispersion and density imaging, white matter tract integrity, and multiple diffusion encoding, referred to as advanced diffusion MRI, have been proposed. These are capable of capturing in vivo microstructural changes in the brain and spinal cord in normal and pathological states in greater detail than DTI.

    This paper reviews the current status of recent advanced diffusion MRI for assessing MS in vivo as part of an issue celebrating two decades of magnetic resonance in medical sciences (MRMS), an official journal of the Japanese Society of Magnetic Resonance in Medicine.

  • Hiroyuki Kabasawa
    2022 年 21 巻 1 号 p. 71-82
    発行日: 2022年
    公開日: 2022/03/01
    [早期公開] 公開日: 2021/04/16
    ジャーナル オープンアクセス

    Clinical MRI systems have continually improved over the years since their introduction in the 1980s. In MRI technical development, the developments in each MRI system component, including data acquisition, image reconstruction, and hardware systems, have impacted the others. Progress in each component has induced new technology development opportunities in other components. New technologies outside of the MRI field, for example, computer science, data processing, and semiconductors, have been immediately incorporated into MRI development, which resulted in innovative applications. With high performance computing and MR technology innovations, MRI can now provide large volumes of functional and anatomical image datasets, which are important tools in various research fields. MRI systems are now combined with other modalities, such as positron emission tomography (PET) or therapeutic devices. These hybrid systems provide additional capabilities.

    In this review, MRI advances in the last two decades will be considered. We will discuss the progress of MRI systems, the enabling technology, established applications, current trends, and the future outlook.

  • Masako Kataoka, Maya Honda, Akane Ohashi, Ken Yamaguchi, Naoko Mori, M ...
    2022 年 21 巻 1 号 p. 83-94
    発行日: 2022年
    公開日: 2022/03/01
    [早期公開] 公開日: 2022/02/25
    ジャーナル オープンアクセス

    Ultrafast dynamic contrast-enhanced (UF-DCE) MRI is a new approach to capture kinetic information in the very early post-contrast period with high temporal resolution while keeping reasonable spatial resolution. The detailed timing and shape of the upslope in the time–intensity curve are analyzed. New kinetic parameters obtained from UF-DCE MRI are useful in differentiating malignant from benign lesions and in evaluating prognostic markers of the breast cancers. Clinically, UF-DCE MRI contributes in identifying hypervascular lesions when the background parenchymal enhancement (BPE) is marked on conventional dynamic MRI. This review starts with the technical aspect of accelerated acquisition. Practical aspects of UF-DCE MRI include identification of target hypervascular lesions from marked BPE and diagnosis of malignant and benign lesions based on new kinetic parameters derived from UF-DCE MRI: maximum slope (MS), time to enhance (TTE), bolus arrival time (BAT), time interval between arterial and venous visualization (AVI), and empirical mathematical model (EMM). The parameters derived from UF-DCE MRI are compared in terms of their diagnostic performance and association with prognostic markers. Pitfalls of UF-DCE MRI in the clinical situation are also covered. Since UF-DCE MRI is an evolving technique, future prospects of UF-DCE MRI are discussed in detail by citing recent evidence. The topic covers prediction of treatment response, multiparametric approach using DWI-derived parameters, evaluation of tumor-related vessels, and application of artificial intelligence for UF-DCE MRI. Along with comprehensive literature review, illustrative clinical cases are used to understand the value of UF-DCE MRI.

  • Akira Kunimatsu, Koichiro Yasaka, Hiroyuki Akai, Haruto Sugawara, Nats ...
    2022 年 21 巻 1 号 p. 95-109
    発行日: 2022年
    公開日: 2022/03/01
    [早期公開] 公開日: 2021/03/10
    ジャーナル オープンアクセス
    電子付録

    Texture analysis, as well as its broader category radiomics, describes a variety of techniques for image analysis that quantify the variation in surface intensity or patterns, including some that are imperceptible to the human visual system. Cerebral gliomas have been most rigorously studied in brain tumors using MR-based texture analysis (MRTA) to determine the correlation of various clinical measures with MRTA features. Promising results in cerebral gliomas have been shown in the previous MRTA studies in terms of the correlation with the World Health Organization grades, risk stratification in gliomas, and the differentiation of gliomas from other brain tumors. Multiple MRTA studies in gliomas have repeatedly shown high performance of entropy, a measure of the randomness in image intensity values, of either histogram- or gray-level co-occurrence matrix parameters. Similarly, researchers have applied MRTA to other brain tumors, including meningiomas and pediatric posterior fossa tumors.

    However, the value of MRTA in the clinical use remains undetermined, probably because previous studies have shown only limited reproducibility of the result in the real world. The low-to-modest generalizability may be attributed to variations in MRTA methods, sampling bias that originates from single-institution studies, and overfitting problems to a limited number of samples.

    To enhance the reliability and reproducibility of MRTA studies, researchers have realized the importance of standardizing methods in the field of radiomics. Another advancement is the recent development of a comprehensive assessment system to ensure the quality of a radiomics study. These two-way approaches will secure the validity of upcoming MRTA studies. The clinical use of texture analysis in brain MRI will be accelerated by these continuous efforts.

  • Kagayaki Kuroda, Satoshi Yatsushiro
    2022 年 21 巻 1 号 p. 110-131
    発行日: 2022年
    公開日: 2022/03/01
    [早期公開] 公開日: 2022/02/25
    ジャーナル オープンアクセス

    Over the last two decades, the status of MR safety has dramatically changed. In particular, ever since the MR-conditional cardiac device was approved by the Food and Drug Administration (FDA) in 2008 and by the Pharmaceuticals and Medical Devices Agency (PMDA) in 2012, the safety of patients with an implantable medical device (IMD) has been one of the most important issues in terms of MR use. In conjunction with the regulatory approvals for various IMDs, standards, technical specifications, and guidelines have also been rapidly created and developed. Many invaluable papers investigating and reviewing the history and status of MR use in the presence of IMDs already exist. As such, this review paper seeks to bridge the gap between clinical practice and the information that is obtained by standard-based tests and provided by an IMD’s package insert or instructions for use. Interpretation of the gradient of the magnetic flux density intensity of the static magnetic field with respect to the magnetic displacement force is discussed, along with the physical background of RF field. The relationship between specific absorption rate (SAR) and B1+RMS, and their effects on image quality are described. In addition, insofar as providing new directions for future research and practice, the feasibility of safety test methods for RF-induced heating of IMDs using MR thermometry, evaluation of tissue heat damage, and challenges in cardiac IMDs will be discussed.

  • Yoshitaka Masutani
    2022 年 21 巻 1 号 p. 132-147
    発行日: 2022年
    公開日: 2022/03/01
    [早期公開] 公開日: 2021/05/21
    ジャーナル オープンアクセス

    In this paper, fundamentals and recent progress for obtaining biological features quantitatively by using diffusion MRI are reviewed. First, a brief description of diffusion MRI history, application, and development was presented. Then, well-known parametric models including diffusion tensor imaging (DTI), diffusional kurtosis imaging (DKI), and neurite orientation dispersion diffusion imaging (NODDI) are introduced with several classifications in various viewpoints with other modeling schemes. In addition, this review covers mathematical generalization and examples of methodologies for the model parameter inference from conventional fitting to recent machine learning approaches, which is called Q-space learning (QSL). Finally, future perspectives on diffusion MRI parameter inference are discussed with the aspects of imaging modeling and simulation.

  • Mitsunori Matsumae, Jun Nishiyama, Kagayaki Kuroda
    2022 年 21 巻 1 号 p. 148-167
    発行日: 2022年
    公開日: 2022/03/01
    [早期公開] 公開日: 2021/12/09
    ジャーナル オープンアクセス

    One of the major issues in the surgical treatment of gliomas is the concern about maximizing the extent of resection while minimizing neurological impairment. Thus, surgical planning by carefully observing the relationship between the glioma infiltration area and eloquent area of the connecting fibers is crucial. Neurosurgeons usually detect an eloquent area by functional MRI and identify a connecting fiber by diffusion tensor imaging. However, during surgery, the accuracy of neuronavigation can be decreased due to brain shift, but the positional information may be updated by intraoperative MRI and the next steps can be planned accordingly. In addition, various intraoperative modalities may be used to guide surgery, including neurophysiological monitoring that provides real-time information (e.g., awake surgery, motor-evoked potentials, and sensory evoked potential); photodynamic diagnosis, which can identify high-grade glioma cells; and other imaging techniques that provide anatomical information during the surgery. In this review, we present the historical and current context of the intraoperative MRI and some related approaches for an audience active in the technical, clinical, and research areas of radiology, as well as mention important aspects regarding safety and types of devices.

  • Takamichi Murakami, Keitaro Sofue, Masatoshi Hori
    2022 年 21 巻 1 号 p. 168-181
    発行日: 2022年
    公開日: 2022/03/01
    [早期公開] 公開日: 2021/08/21
    ジャーナル オープンアクセス

    Gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA; Gadoxetic acid; Gadoxetate disodium) is a hepatocyte-specific MR contrast agent. It acts as an extracellular contrast agent in the early phase after intravenous injection, and then is taken up by hepatocytes later. Using this contrast agent, we can evaluate the hemodynamics of the liver and liver tumors, and can therefore improve the detection and characterization of hepatocellular carcinoma (HCC). Gd-EOB-DTPA helps in the more accurate detection of hypervascular HCC than by other agents. In addition, Gd-EOB-DTPA can detect hypovascular HCC, which is an early stage of the multi-stage carcinogenesis, with a low signal in the hepatobiliary phase. In addition to tumor detection and characterization, Gd-EOB-DTPA contrast-enhanced MR imaging can be applied for liver function evaluation and prognoses evaluation. Thus, Gd-EOB-DTPA plays an important role in the diagnosis of HCC. However, we have to employ optimal imaging techniques to improve the diagnostic ability. In this review, we aimed to discuss the characteristics of the contrast media, optimal imaging techniques, diagnosis, and applications.

  • Shinji Naganawa, Toshiaki Taoka
    2022 年 21 巻 1 号 p. 182-194
    発行日: 2022年
    公開日: 2022/03/01
    [早期公開] 公開日: 2020/11/27
    ジャーナル オープンアクセス

    The central nervous system (CNS) was previously thought to be the only organ system lacking lymphatic vessels to remove waste products from the interstitial space. Recently, based on the results from animal experiments, the glymphatic system was hypothesized. In this hypothesis, cerebrospinal fluid (CSF) enters the periarterial spaces, enters the interstitial space of the brain parenchyma via aquaporin-4 (AQP4) channels in the astrocyte end feet, and then exits through the perivenous space, thereby clearing waste products. From the perivenous space, the interstitial fluid drains into the subarachnoid space and meningeal lymphatics of the parasagittal dura. It has been reported that the glymphatic system is particularly active during sleep. Impairment of glymphatic system function might be a cause of various neurodegenerative diseases such as Alzheimer’s disease, normal pressure hydrocephalus, glaucoma, and others. Meningeal lymphatics regulate immunity in the CNS. Many researchers have attempted to visualize the function and structure of the glymphatic system and meningeal lymphatics in vivo using MR imaging. In this review, we aim to summarize these in vivo MR imaging studies and discuss the significance, current limitations, and future directions. We also discuss the significance of the perivenous cyst formation along the superior sagittal sinus, which is recently discovered in the downstream of the glymphatic system.

  • Hajime Sakuma, Masaki Ishida
    2022 年 21 巻 1 号 p. 195-211
    発行日: 2022年
    公開日: 2022/03/01
    [早期公開] 公開日: 2021/06/09
    ジャーナル オープンアクセス

    Stress myocardial perfusion imaging (MPI) is the preferred test in patients with intermediate-to-high clinical likelihood of coronary artery disease (CAD) and can be used as a gatekeeper to avoid unnecessary revascularization. Cardiac magnetic resonance (CMR) has a number of favorable characteristics, including: (1) high spatial resolution that can delineate subendocardial ischemia; (2) comprehensive assessment of morphology, global and regional cardiac functions, tissue characterization, and coronary artery stenosis; and (3) no radiation exposure to patients. According to meta-analysis studies, the diagnostic accuracy of perfusion CMR is comparable to positron emission tomography (PET) and perfusion CT, and is better than single-photon emission CT (SPECT) when fractional flow reserve (FFR) is used as a reference standard. In addition, stress CMR has an excellent prognostic value. One meta-analysis study demonstrated the annual event rate of cardiovascular death or non-fatal myocardial infarction was 4.9% and 0.8%, respectively, in patients with positive and negative stress CMR. Quantitative assessment of perfusion CMR not only allows the objective evaluation of regional ischemia but also provides insights into the pathophysiology of microvascular disease and diffuse subclinical atherosclerosis. For accurate quantification of myocardial perfusion, saturation correction of arterial input function is important. There are two major approaches for saturation correction, one is a dual-bolus method and the other is a dual-sequence method. Absolute quantitative mapping with myocardial perfusion CMR has good accuracy in detecting coronary microvascular dysfunction. Flow measurement in the coronary sinus (CS) with phase contrast cine CMR is an alternative approach to quantify global coronary flow reserve (CFR). The measurement of global CFR by quantitative analysis of perfusion CMR or flow measurement in the CS permits assessment of microvascular disease and diffuse subclinical atherosclerosis, which may provide improved prediction of future event risk in patients with suspected or known CAD. Multi-institutional studies to validate the diagnostic and prognostic values of quantitative perfusion CMR approaches are required.

  • Yumi Tanaka, Yoshiharu Ohno, Satomu Hanamatsu, Yuki Obama, Takahiro Ue ...
    2022 年 21 巻 1 号 p. 212-234
    発行日: 2022年
    公開日: 2022/03/01
    [早期公開] 公開日: 2021/04/29
    ジャーナル オープンアクセス
    電子付録

    Since thoracic MR imaging was first used in a clinical setting, it has been suggested that MR imaging has limited clinical utility for thoracic diseases, especially lung diseases, in comparison with x-ray CT and positron emission tomography (PET)/CT. However, in many countries and states and for specific indications, MR imaging has recently become practicable. In addition, recently developed pulmonary MR imaging with ultra-short TE (UTE) and zero TE (ZTE) has enhanced the utility of MR imaging for thoracic diseases in routine clinical practice. Furthermore, MR imaging has been introduced as being capable of assessing pulmonary function. It should be borne in mind, however, that these applications have so far been academically and clinically used only for healthy volunteers, but not for patients with various pulmonary diseases in Japan or other countries. In 2020, the Fleischner Society published a new report, which provides consensus expert opinions regarding appropriate clinical indications of pulmonary MR imaging for not only oncologic but also pulmonary diseases. This review article presents a brief history of MR imaging for thoracic diseases regarding its technical aspects and major clinical indications in Japan 1) in terms of what is currently available, 2) promising but requiring further validation or evaluation, and 3) developments warranting research investigations in preclinical or patient studies. State-of-the-art MR imaging can non-invasively visualize lung structural and functional abnormalities without ionizing radiation and thus provide an alternative to CT. MR imaging is considered as a tool for providing unique information. Moreover, prospective, randomized, and multi-center trials should be conducted to directly compare MR imaging with conventional methods to determine whether the former has equal or superior clinical relevance. The results of these trials together with continued improvements are expected to update or modify recommendations for the use of MRI in near future.

  • Moyoko Tomiyasu, Masafumi Harada
    2022 年 21 巻 1 号 p. 235-252
    発行日: 2022年
    公開日: 2022/03/01
    [早期公開] 公開日: 2022/02/15
    ジャーナル オープンアクセス

    MR spectroscopy (MRS) is a unique and useful method for noninvasively evaluating biochemical metabolism in human organs and tissues, but its clinical dissemination has been slow and often limited to specialized institutions or hospitals with experts in MRS technology. The number of 3-T clinical MR scanners is now increasing, representing a major opportunity to promote the use of clinical MRS. In this review, we summarize the theoretical background and basic knowledge required to understand the results obtained with MRS and introduce the general consensus on the clinical utility of proton MRS in routine clinical practice. In addition, we present updates to the consensus guidelines on proton MRS published by the members of a working committee of the Japan Society of Magnetic Resonance in Medicine in 2013. Recent research into multinuclear MRS equipped in clinical MR scanners is explained with an eye toward future development. This article seeks to provide an overview of the current status of clinical MRS and to promote the understanding of when it can be useful. In the coming years, MRS-mediated biochemical evaluation is expected to become available for even routine clinical practice.

EDITORIAL
feedback
Top