詳細検索結果
以下の条件での結果を表示する: 検索条件を変更
クエリ検索: "ServiceNow"
4件中 1-4の結果を表示しています
  • ~ITディビジョン編~
    松浦 孝紀
    学術情報処理研究
    2021年 25 巻 1 号 66-70
    発行日: 2021/11/01
    公開日: 2021/11/01
    ジャーナル フリー

    沖縄科学技術大学院大学(以下「本学」という)のIT部門では2018年度当時、Request Tracker[1](以下「RT」という)というオープンソースのチケット管理システムでのユーザー問い合わせ管理や、全学共通で利用されているDrupal[2]というオープンソースのContents Management System(以下「CMS」という)を基盤としたITポータルサイトを学内ユーザー向けに提供していたが、双方のツール共に課題を抱えており、ITサポート業務を圧迫していた。そのため、ITサポート業務のプロセスを抜本的に見直すと同時に、

    ServiceNow
    [3]のIT Service Management(以下「ITSM」という)[4]というクラウドサービスへ全面的に移行した。このサービスの導入により、日々の問い合わせ対応時間の短縮や申請プロセスの標準化・効率化が実現でき、IT全体のオペレーションが著しく改善された。ここでは主に
    ServiceNow
    の導入に至るまでの背景や導入目的、導入後の効果、更に今後の展望として大学全体の業務プロセスの標準化・効率化を目指すべく当サービスを本学の他の事務管理部門へ横展開している取り組み状況を報告する。

  • 野原 典彦
    農村生活研究
    2023年 66 巻 2 号 15-18
    発行日: 2023/06/15
    公開日: 2023/12/09
    ジャーナル フリー
  • 岩本 隆
    研究 技術 計画
    2020年 35 巻 2 号 230-240
    発行日: 2020/08/20
    公開日: 2020/08/22
    ジャーナル フリー

    Klaus Schwab, who is the founder and executive chairman of the World Economic Forum, published a book "The Fourth Industrial Revolution" in January 2016 and this word was spread to the world since then. The fourth industrial revolution began in the early 2010s and various X-Tech businesses such as AgriTech, EdTech, FinTech, HealthTech, HRTech, etc. have been growing. The author had been deeply involved in growing HRTech and EdTech businesses in Japan through industry-academia-government collaboration and the breakthrough structure in X-Tech businesses was clarified through the case studies of HRTech and EdTech businesses. Since X-Tech businesses were cross-industry new businesses and mostly public policy dependent, it was clarified that strategic PR (Public Relations) and GR (Government Relations) were important to develop new markets. And the approaches to grow the markets and businesses through strategic PR and GR were structured.

  • Wan-Chih Lin, Ming-Hseng Tseng
    Journal of Disaster Research
    2025年 20 巻 3 号 386-395
    発行日: 2025/06/01
    公開日: 2025/06/02
    ジャーナル オープンアクセス

    This study aims to evaluate the performance of various large language models (LLMs) in generating dengue fever epidemic and earthquake intensity maps through the integration of spatial information technology. By combining natural language processing techniques, this paper presents an innovative method to extract real-time data related to dengue fever and earthquake events, which is then used to generate corresponding geographic information maps, thereby improving real-time monitoring and disaster management efficiency. The research designed a series of detailed prompts, including topic descriptions, data sources, analysis objectives, and specific requirements, to test the capabilities of multiple LLMs in the code generation process. The codes generated by these models were further used to map the geographic distribution of dengue fever outbreaks and earthquake intensities in Taiwan. Subsequently, the codes were evaluated on accuracy, operational efficiency, and the clarity of the visualized results. The findings revealed that in addition to ChatGPT, models such as Copilot, Claude, and Nxcode-CQ-7B-orpo also excelled at generating precise and efficient maps. These LLMs are capable of automating the processing of large amounts of data and generating visualized charts with decision support functions, significantly reducing the time and labor costs associated with traditional manual operations. In addition, this innovative approach provides a new technical pathway for real-time geographic disaster monitoring and management. The results underscore the value of integrating LLMs with spatial information technology, offering new research directions for geographic information systems applications and providing robust technical support for disaster response and public health management.

feedback
Top