Biological and Pharmaceutical Bulletin
Online ISSN : 1347-5215
Print ISSN : 0918-6158
ISSN-L : 0918-6158
Regular Articles
Development of a Novel Gene Silencer Pyrrole–Imidazole Polyamide Targeting Human Connective Tissue Growth Factor
Jian-Xin WanNoboru FukudaTakahiro UenoTakayoshi WatanabeHiroyuki MatsudaKosuke SaitoHiroki NagaseYoshiaki MatsumotoKoichi Matsumoto
著者情報
ジャーナル フリー

2011 年 34 巻 10 号 p. 1572-1577

詳細
抄録

Pyrrole–imidazole (PI) polyamide can bind to specific sequences in the minor groove of double-helical DNA and inhibit transcription of the genes. We designed and synthesized a PI polyamide to target the human connective tissue growth factor (hCTGF) promoter region adjacent to the Smads binding site. Among coupling activators that yield PI polyamides, 1-[bis(dimethylamino)methylene]-5-chloro-1H-benzotriazolium 3-oxide hexafluorophosphate (HCTU) was most effective in total yields of PI polyamides. A gel shift assay showed that a PI polyamide designed specifically for hCTGF (PI polyamide to hCTGF) bound the appropriate double-stranded oligonucleotide. A fluorescein isothiocyanate (FITC)-conjugated PI polyamide to CTGF permeated cell membranes and accumulated in the nuclei of cultured human mesangial cells (HMCs) and remained there for 48 h. The PI polyamide to hCTGF significantly decreased phorbol 12-myristate acetate (PMA)- or transforming growth factor-β1 (TGF-β1)-stimulated luciferase activity of the hCTGF promoter in cultured HMCs. The PI polyamide to hCTGF significantly decreased PMA- or TGF-β1-stimulated expression of hCTGF mRNA in a dose-dependent manner. The PI polyamide to hCTGF significantly decreased PMA- or TGF-β1-stimulated levels of hCTGF protein in HMCs. These results indicate that the developed synthetic PI polyamide to hCTGF could be a novel gene silencer for fibrotic diseases.

著者関連情報
© 2011 The Pharmaceutical Society of Japan
前の記事 次の記事
feedback
Top