Biological and Pharmaceutical Bulletin
Online ISSN : 1347-5215
Print ISSN : 0918-6158
ISSN-L : 0918-6158
Regular Articles
The Coumarin Derivative Osthole Stimulates Adult Neural Stem Cells, Promotes Neurogenesis in the Hippocampus, and Ameliorates Cognitive Impairment in APP/PS1 Transgenic Mice
Liang KongYu HuYingjia YaoYanan JiaoShaoheng LiJingxian Yang
著者情報
ジャーナル フリー HTML

2015 年 38 巻 9 号 p. 1290-1301

詳細
抄録

It is believed that neuronal death caused by abnormal deposition of amyloid-beta peptide is the major cause of the cognitive decline in Alzheimer’s disease. Adult neurogenesis plays a key role in the rescue of impaired neurons and amelioration of cognitive impairment. In the present study, we demonstrated that osthole, a natural coumarin derivative, was capable of promoting neuronal stem cell (NSC) survival and inducing NSC proliferation in vitro. In osthole-treated APP/PS1 transgenic mice, a significant improvement in learning and memory function was seen, which was associated with a significant increase in the number of new neurons (Ki67+/NF-M+) and a decrease in apoptotic cells in the hippocampal region of the brain. These observations suggested that osthole promoted NSC proliferation, supported neurogenesis, and thus efficiently rescued impaired neurons in the hippocampus and ameliorated cognitive impairment. We also found that osthole treatment activated the Notch pathway and upregulated the expression of self-renewal genes Notch 1 and Hes 1 mRNA in NSCs. However, when Notch activity was blocked by the γ-secretase inhibitor DAPT, the augmentation of Notch 1 and Hes 1 protein was ameliorated, and the proliferation-inducing effect of osthole was abolished, suggesting that the effects of osthole are at least in part mediated by activation of the Notch pathway.

著者関連情報
© 2015 The Pharmaceutical Society of Japan
前の記事 次の記事
feedback
Top