Biological and Pharmaceutical Bulletin
Online ISSN : 1347-5215
Print ISSN : 0918-6158
ISSN-L : 0918-6158
Regular Articles
Cordycepin Suppresses Thymic Stromal Lymphopoietin Expression via Blocking Caspase-1 and Receptor-Interacting Protein 2 Signaling Pathways in Mast Cells
Myoung-schook YoouMu Hyun JinSo Young LeeSang Hwa LeeByunghyun KimSeok Seon RohIn Hwa ChoiMyeong Soo LeeHyung-Min KimHyun-Ja Jeong
著者情報
ジャーナル フリー HTML

2016 年 39 巻 1 号 p. 90-96

詳細
抄録
Cordycepin (3′-deoxyadenosine) is one of the active components isolated from Cordyceps militaris, and has been shown to have anti-inflammatory, anti-oxidant, anti-aging, and anti-cancer effects. Mast cell-derived thymic stromal lymphopoietin (TSLP) plays an important role in the pathogenesis of allergic inflammatory reactions. Here, we investigated the regulatory effect and mechanisms of cordycepin on the expression of TSLP in the human mast cell line, HMC-1 cells, and in the human keratinocyte cell line, HaCaT cells. Cordycepin significantly decreased the production and mRNA expression of TSLP through the inhibition of caspase-1 and nuclear factor-κB activation. Cordycepin also significantly reduced the phosphorylation of receptor-interacting protein 2 and inhibitory kappa B (IκB) kinase β. Cordycepin significantly decreased the production and mRNA expression of interleukin (IL)-8, IL-1β, IL-6, and tumor necrosis factor-α in activated HMC-1 cells. Moreover, cordycepin significantly decreased the levels of TSLP in activated HaCaT cells. Our studies suggest that cordycepin can be applied to the treatment of allergic inflammatory diseases exacerbated by TSLP.
Fullsize Image
著者関連情報
© 2016 The Pharmaceutical Society of Japan
前の記事 次の記事
feedback
Top