Biological and Pharmaceutical Bulletin
Online ISSN : 1347-5215
Print ISSN : 0918-6158
ISSN-L : 0918-6158
Regular Articles
The Synthetic Curcumin Derivative CNB-001 Attenuates Thrombin-Stimulated Microglial Inflammation by Inhibiting the ERK and p38 MAPK Pathways
Tatsuhiro Akaishi Shohei YamamotoKazuho Abe
Author information
JOURNAL FREE ACCESS FULL-TEXT HTML

2020 Volume 43 Issue 1 Pages 138-144

Details
Abstract

We have recently found that the synthetic curcumin derivative CNB-001 suppresses lipopolysaccharide (LPS)-induced nitric oxide (NO) production in cultured microglia, demonstrating that it exerts anti-neuroinflammatory effects by regulating microglial activation. To explore the molecular mechanisms underlying the anti-inflammatory effect of CNB-001, the present study investigated whether CNB-001 is also effective for microglial NO production induced by other stimulants than LPS. Treatment of primary cultured rat microglia with thrombin, a serine protease that has been proposed as a mediator of cerebrovascular injuries, caused the expression of inducible NO synthase (iNOS) and the production of NO. The thrombin-induced NO production was completely blocked by the presence of SCH-79797, a selective protease-activated receptor 1 (PAR-1) antagonist, suggesting that the effect of thrombin is mediated by PAR-1. CNB-001 (1–10 µM) attenuated the thrombin-induced iNOS expression and NO production without affecting the PAR-1 expression. In addition, thrombin treatment caused rapid phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK). The changes in ERK and p38 MAPK were significantly suppressed by the presence of CNB-001. These results demonstrate that CNB-001 suppresses thrombin-stimulated microglial activation by inhibiting the ERK and p38 MAPK pathways.

Graphical Abstract Fullsize Image
Content from these authors
© 2020 The Pharmaceutical Society of Japan
Previous article Next article
feedback
Top