Biological and Pharmaceutical Bulletin
Online ISSN : 1347-5215
Print ISSN : 0918-6158
ISSN-L : 0918-6158
Regular Articles
Inflammation-Induced Attenuation of Prostaglandin D2 Elimination across Rat Blood–Brain Barrier: Involvement of the Downregulation of Organic Anion Transporter 3 and Multidrug Resistance-Associated Protein 4
Shin-ichi Akanuma Kahori HashimotoYukiko YoshidaYoshiyuki KuboKen-ichi Hosoya
著者情報
ジャーナル フリー HTML

2020 年 43 巻 11 号 p. 1669-1677

詳細
抄録

Prostaglandin (PG) D2 is a lipid mediator, and in the brain, overproduction of PGD2 is reportedly involved in the progression and exacerbation of neuroinflammation. The objective of this study was to elucidate PGD2 efflux transport, under normal and inflammatory conditions, across the blood–brain barrier (BBB), which is formed by brain capillaries. Elimination of [3H]PGD2 across the BBB of normal and lipopolysaccharide (LPS)-induced inflammatory rats was examined by the intracerebral microinjection technique. After intracerebral injection, the percentage of [3H]PGD2 remaining in the ipsilateral cerebrum decreased with time, with a half-life of 13 min. This [3H]PGD2 elimination across the BBB was significantly inhibited by the co-administration of unlabeled PGD2, which suggests carrier-mediated PGD2 efflux transport at the BBB. In isolated rat brain capillaries, mRNA expression of organic anion transporter (Oat) 3, organic anion-transporting polypeptide (Oatp) 1a4, and multidrug resistance-associated protein (Mrp) 4 was observed. In addition, co-administration of substrates/inhibitors for Oat3, Oatp1a4, and/or Mrp4, such as benzylpenicillin and cefmetazole, reduced [3H]PGD2 elimination across the BBB. Data suggest that Oat3 and Mrp4, but not Oatp1a4 are involved in PGD2 elimination across the BBB, as Oatp1a4-expressing Xenopus (X.) oocytes did not show the significant [3H]PGD2 uptake compared with water-injected X. oocytes. In LPS-treated rats, [3H]PGD2 elimination across the BBB and mRNA expression levels of Oat3 and Mrp4 were significantly decreased. Our data suggest that Oat3- and Mrp4-mediated PGD2 elimination across the BBB is attenuated under inflammatory conditions.

Fullsize Image
著者関連情報
© 2020 The Pharmaceutical Society of Japan
前の記事 次の記事
feedback
Top