Biological and Pharmaceutical Bulletin
Online ISSN : 1347-5215
Print ISSN : 0918-6158
ISSN-L : 0918-6158
Regular Articles
Hepatoprotective Effect of Neoagarooligosaccharide via Activation of Nrf2 and Enhanced Antioxidant Efficacy
Ji Hye YangChang-Su NaSam Seok ChoKyu Min KimJi Hyun LeeXi-Qiang ChenSae Kwang KuIl Je ChoEun Joo KimJe Hyeon LeeSung Hwan Ki
Author information
JOURNAL FREE ACCESS FULL-TEXT HTML
Supplementary material

2020 Volume 43 Issue 4 Pages 619-628

Details
Abstract

Neoagarooligosaccharides (NAOS) are generated by β-agarases, which cleave the β-1,4 linkage in agarose. Previously, we reported that NAOS inhibited fat accumulation in the liver and decreased serum cholesterol levels. However, the hepatoprotective effect of NAOS on acute liver injury has not yet been investigated. Thus, we examined whether NAOS could activate nuclear factor (NF)-E2-related factor 2 (Nrf2)–antioxidant response element (ARE) and upregulates its target gene, and has hepatoprotective effect in vivo. In hepatocytes, phosphorylation and subsequent nuclear translocation of Nrf2 are increased by treatment with NAOS, in a manner dependent on p38 and c-Jun N-terminal kinase (JNK). Consistently, NAOS augmented ARE reporter gene activity and the antioxidant protein levels, resulting in increased intracellular glutathione levels. NAOS antagonized tert-butylhydroperoxide-induced reactive oxygen species (ROS) generation. Moreover, NAOS inhibited acetaminophen (APAP)-induced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and significantly decreased hepatocyte degeneration and inflammatory cell infiltration. Moreover, ROS production and glutathione depletion by APAP were reversed by NAOS. APAP-mediated apoptotic signaling pathways were also inhibited in NAOS-treated mice. Upregulalted hepatic expression of genes related to inflammation by APAP were consistently diminished by NAOS. Collectively, our results demonstrate that NAOS exhibited a hepatoprotective effect against APAP-mediated acute liver damage through its antioxidant capacity.

Graphical Abstract Fullsize Image
Content from these authors
© 2020 The Pharmaceutical Society of Japan
Previous article Next article
feedback
Top