Biological and Pharmaceutical Bulletin
Online ISSN : 1347-5215
Print ISSN : 0918-6158
ISSN-L : 0918-6158
Regular Article
Potentiation of Nicotine-Induced Currents by QO58, a Kv7 Channel Opener, in Intracardiac Ganglion Neurons of Rats
Shiho ArichiKei EtoMasanori OgataSachie Sasaki-HamadaHitoshi Ishibashi
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2025 Volume 48 Issue 2 Pages 101-107

Details
Abstract

QO58 (5-(2,6-dichloro-5-fluoropyridin-3-yl)-3-phenyl-2-(trifluoromethyl)-1H-[1,5-a] pyrimidin-7-one) is currently used as a specific activator of the Kv7 (KCNQ) family of K+ channels. Here, we report an unexpected potentiating effect of this drug on nicotinic acetylcholine receptors. We recorded the whole-cell responses to the rapid application of nicotine with the Cs+-based pipette solution in intracardiac ganglion neurons freshly dissociated from the rat heart. Nicotine-induced inward currents were concentration-dependently blocked by mecamylamine, but not by 1 μM atropine at a holding potential of −60 mV. While the application of QO58 per se evoked a persistent inward current at this holding potential, 10 μM QO58 potentiated the peak amplitude of the nicotine-induced current. The QO58-induced inward currents were inhibited by the Kv7 channel blockers XE991 and Ba2+, but not by mecamylamine. On the other hand, the nicotine-induced current potentiated by QO58 was fully inhibited by mecamylamine. The facilitatory action of QO58 on the nicotinic response was unaffected by Ba2+. QO58 did not affect the reversal potential of the nicotine-induced current. QO58 apparently shifted the concentration–response curve of nicotine to the left. The half-maximal effective concentrations for nicotine in the absence and presence of 10 μM QO58 were 10.2 and 4.3 μM, respectively. These results suggest that QO58 acts as a positive allosteric modulator of nicotinic acetylcholine receptors. Given the prevalence of nicotinic receptor signaling, the present observations should be considered in future studies on the roles of Kv7 channels in the function of neural circuits and diseases.

Fullsize Image
Content from these authors
© 2025 Author(s).
Published by The Pharmaceutical Society of Japan

This article is licensed under a Creative Commons [Attribution-NonCommercial 4.0 International] license.
https://creativecommons.org/licenses/by-nc/4.0/
Previous article Next article
feedback
Top