Biological and Pharmaceutical Bulletin
Online ISSN : 1347-5215
Print ISSN : 0918-6158
ISSN-L : 0918-6158
Regular Article
Activated Fibroblast Growth Factor Receptor 1 Mitigated Poly-PR–Induced Oxidative Stress and Protein Translational Impairment
Taisei ItoKazuki OhuchiHisaka KuritaTakanori MurakamiShinnosuke TakizawaAyaka FujimakiJunya MurataYasuhisa OidaIsao HozumiKiyoyuki KitaichiMasatoshi Inden
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML
Supplementary material

2025 Volume 48 Issue 2 Pages 93-100

Details
Abstract

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by selective motor neuron cell death. A GGGGCC hexanucleotide repeat expansion (HRE) within the chromosome 9 open reading frame 72 (C9orf72) gene is a major causative factor in ALS. This abnormal HRE triggers five types of dipeptide repeat protein (DPR), each composed of two alternating amino acid expressions. Among the DPRs, arginine-rich Poly-PR localizes predominantly to the nucleus, exerting particularly strong toxicity on motor and cortical neurons. Several mechanisms have been proposed for poly-PR–induced neurotoxicity. In this study, poly-PR–expressing NSC34 motor neuron-like cells showed an increase in oxidative stress. Fibroblast growth factor receptor 1 (FGFR1) is known to promote neurogenesis and inhibit apoptosis in neurons. However, its neuroprotective effects against DPR-induced toxicity have not been previously reported. Here, we demonstrated that FGFR1 activation reduced oxidative stress by upregulating nuclear factor erythroid 2-related factor 2 (NRF2) expression. Furthermore, we propose that the increase in NRF2 through FGFR1 activation may result from the alleviation of protein translation impairment. Overall, these findings suggest that FGFR1 activation provides neuroprotection against poly-PR toxicity and may represent a potential therapeutic strategy for ALS.

Fullsize Image
Content from these authors
© 2025 Author(s).
Published by The Pharmaceutical Society of Japan

This article is licensed under a Creative Commons [Attribution-NonCommercial 4.0 International] license.
https://creativecommons.org/licenses/by-nc/4.0/
Next article
feedback
Top