2025 Volume 48 Issue 3 Pages 213-221
The emergence of drug-resistant bacteria has posed a significant problem in medical institutions worldwide. Colistin, which targets lipopolysaccharide (LPS), serves as a last-resort antimicrobial agent against multidrug-resistant Gram-negative bacteria. Nevertheless, Acinetobacter baumannii, a pathogen with a worldwide prevalence of antimicrobial resistance, has been reported to develop resistance to colistin frequently. In this review, we discuss how A. baumannii acquires resistance to colistin, focusing on modification as well as loss of LPS present in its outer membrane, which is the primary mechanism of A. baumannii’s resistance to colistin. Basic and clinical insights regarding colistin resistance in A. baumannii have been discussed in isolation. Therefore, we discuss the relationship between these 2 colistin resistance mechanisms in terms of the frequency and fitness of genetic mutations based on the insights from basic studies and clinical settings. We concluded that understanding the detailed mechanisms of colistin drug resistance requires a comprehensive understanding of both the frequency of mutations and the effects of selection pressure. Finally, we highlight the importance of promoting research from both basic science and clinical perspectives.