2025 Volume 48 Issue 5 Pages 682-686
Opioid receptors and their endogenous ligands are novel targets for the treatment of depression. The nociception (NOP) receptor is structurally similar to the opioid receptor, but NOP is known to have a low affinity for the opioid receptor subtypes μ, δ, and κ. In previous studies, we synthesized peptides with a high affinity for opioid receptors and investigated their antidepressant-like effects in mice. However, we have not yet examined whether NOP-related analogs have antidepressant-like effects. Herein, we synthesized NOP analogs (peptide-1–peptide-8) by solid-phase peptide synthesis using the 9-fluorenylmethyloxycarbony (Fmoc) method with Acetyl-Arg-Tyr-Tyr-Arg-Ile-Arg-NH2 (Ac-RYYRIR-NH2) as the lead compound. We examined the affinities and antagonistic activities of the analogs for the NOP receptor using receptor-binding and mouse vas deferens assays, and their effects on the duration of immobile behavior in a tail suspension test. Peptide-6 showed a high affinity and antagonistic activity for the NOP receptor. The intracerebroventricular administration of peptide-6 in mice shortened the duration of immobile behavior, whereas the co-administration of NOP inhibited this effect. Moreover, intracerebroventricular administration of the selective NOP receptor antagonist J-113397 showed antidepressant-like effects in mice. These data suggest that peptide-6 exerts an antidepressant-like effect via inactivation of the central NOP receptor in mice and may represent a lead compound for the development of antidepressant drugs in the future.