Biological and Pharmaceutical Bulletin
Online ISSN : 1347-5215
Print ISSN : 0918-6158
ISSN-L : 0918-6158

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Chlorogenic Acid Inhibits of Osteoclast Differentiation and Bone Resorption by Down-Regulation of Receptor Activator of Nuclear Factor Kappa-B Ligand-Induced Nuclear Factor of Activated T Cells c1 Expression
Sung-Chul KwakCheol LeeJu-Young KimHyun Mee OhHong-Seob SoMyeung Su LeeMun Chual RhoJaemin Oh
著者情報
ジャーナル フリー 早期公開

論文ID: b13-00430

この記事には本公開記事があります。
詳細
抄録

Excessive osteoclastic bone resorption plays a critical role in inflammation-induced bone loss such as rheumatoid arthritis and periodontal bone erosion. Therefore, identification of osteoclast targeted-agents may be a therapeutic approach to the treatment of pathological bone loss. In this study, we isolated chlorogenic acid (CGA) from fructus of G. jasminoides to discover anti-bone resorptive agents. CGA is a polyphenol with anti-inflammatory and anti-oxidant activities, however, its effects on osteoclast differentiation is unknown. Thus, we investigated the effect of CGA in RANKL (receptor activator of NF-κB ligand)-induced osteoclast differentiation and RANKL signaling. CGA dose-dependently inhibited RANKL-mediated osteoclast differentiation in bone marrow macrophages (BMMs) without any evidence of cytotoxicity. CGA inhibited the phosphorylation of p38, Akt, ERK, and IκB, and IκB degradation by RANKL treatment. CGA suppressed the mRNA expression of nuclear factor of activated T cells c1 (NFATc1), TRAP and OSCAR in RANKL-treated bone marrow macrophages (BMMs). Also, overexpression of NFATc1 in BMMs blocked the inhibitory effect of CGA on RANKL-mediated osteoclast differentiation. Furthermore, to evaluate the effects of CGA in vivo, lipopolysaccharide (LPS)-induced bone erosion study was carried out. CGA remarkably attenuated LPS-induced bone loss based on micro-computed tomography and histologic analysis of femurs. Taken together, our findings suggest that CGA may be a potential treatment option for osteoclast-related diseases with inflammatory bone destruction.

著者関連情報
© 2013 The Pharmaceutical Society of Japan
feedback
Top