Circulation Journal
Online ISSN : 1347-4820
Print ISSN : 1346-9843
ISSN-L : 1346-9843
Vascular Disease
Nuclear Paraspeckle Assembly Transcript 1 Enhances Hydrogen Peroxide-Induced Human Vascular Smooth Muscle Cell Injury by Regulating miR-30d-5p/A Disintegrin and Metalloprotease 10
Fushuo ZhouZhi ZhengZhengbiao ZhaTianxin XiongYoumin Pan
著者情報
ジャーナル オープンアクセス HTML
電子付録

2022 年 86 巻 6 号 p. 1007-1018

詳細
抄録

Background: Nuclear paraspeckle assembly transcript 1 (NEAT1) has been reported to be involved in the progression of many cancers; however, the role and mechanisms underlying NEAT1 in abdominal aortic aneurysm (AAA) remain unclear.

Methods and Results: The expression of NEAT1, miR-30d-5p and A disintegrin and metalloprotease 10 (ADAM10) was measured by qRT-PCR and western blot. Functional experiments were conducted by using a CCK-8 assay, EDU assay, flow cytometry, western blot, ELISA, and commercial kits. The target relation was confirmed by dual-luciferase reporter assay and the RIP assay. It was then found that NEAT1 was upregulated in peripheral blood of AAA patients ~3.46-fold, smooth muscle cells (SMCs) isolated from AAA tissues ~2.6-fold and in a hydrogen peroxide (H2O2)-induced injury model of human vascular SMC (HVSMCs) ~2.0- and 3.9-fold at 50 µmol/L and 200 µmol/L H2O2treatment, respectively. NEAT1 deletion attenuated H2O2-induced cell proliferation promotion (40.0% vs. 74.3%), apoptosis inhibition (25.0% vs. 13.5%), and reduction of inflammatory response and oxidative stress in HVSMCs. Mechanistically, NEAT1 targeted miR-30d-5p to prevent the degradation of its target, ADAM10, in HVSMCs. Further rescue experiments suggested miR-30d-5p inhibition mitigated the effects of NEAT1 deletion on H2O2-induced HVSMCs. Moreover, ADAM10 overexpression counteracted the inhibitory functions of miR-30d-5p on H2O2-evoked HVSMC injury.

Conclusions: NEAT1 promoted H2O2-induced HVSMC injury by inducing cell apoptosis, inflammation and oxidative stress through miR-30d-5p/ADAM10 axis, indicating the possible involvement of NEAT1 in the pathogenesis of AAA.

著者関連情報
© 2022, THE JAPANESE CIRCULATION SOCIETY

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
前の記事 次の記事
feedback
Top