Circulation Journal
Online ISSN : 1347-4820
Print ISSN : 1346-9843
ISSN-L : 1346-9843

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Volumetric Characterization of Human Coronary Calcification by Frequency-Domain Optical Coherence Tomography
Emile MehannaHiram G. BezerraDavid PrabhuEric BrandtDaniel ChamiéHirosada YamamotoGuilherme F. AttizzaniSatoko TaharaNienke Van DitzhuijzenYusuke FujinoTomoaki KanayaGregory StefanoWei WangMadhusudhana GargeshaDavid WilsonMarco A. Costa
著者情報
ジャーナル フリー 早期公開

論文ID: CJ-12-1458

この記事には本公開記事があります。
詳細
抄録
Background: Coronary artery calcification (CAC) presents unique challenges for percutaneous coronary intervention. Calcium appears as a signal-poor region with well-defined borders by frequency-domain optical coherence tomography (FD-OCT). The objective of this study was to demonstrate the accuracy of intravascular FD-OCT to determine the distribution of CAC. Methods and Results: Cadaveric coronary arteries were imaged using FD-OCT at 100-μm frame interval. Arteries were subsequently frozen, sectioned and imaged at 20-μm intervals using the Case Cryo-Imaging automated systemTM. Full volumetric co-registration between FD-OCT and cryo-imaging was performed. Calcium area, calcium-lumen distance (depth) and calcium angle were traced on every cross-section; volumetric quantification was performed offline. In total, 30 left anterior descending arteries were imaged: 13 vessels had a total of 55 plaques with calcification by cryo-imaging; FD-OCT identified 47 (85%) of these plaques. A total of 1,285 cryo-images were analyzed and compared with corresponding co-registered 257 FD-OCT images. Calcium distribution, represented by the mean depth and the mean calcium angle, was similar, with excellent correlation between FD-OCT and cryo-imaging respectively (mean depth: 0.25±0.09 vs. 0.26±0.12mm, P=0.742; R=0.90), (mean angle: 35.33±21.86° vs. 39.68±26.61°, P=0.207; R=0.90). Calcium volume was underestimated in large calcifications (3.11±2.14 vs. 4.58±3.39mm3, P=0.001) in OCT vs. cryo respectively. Conclusions: Intravascular FD-OCT can accurately characterize CAC distribution. OCT can quantify absolute calcium volume, but may underestimate calcium burden in large plaques with poorly defined abluminal borders.
著者関連情報
© 2013 THE JAPANESE CIRCULATION SOCIETY
feedback
Top