Chemical and Pharmaceutical Bulletin
Online ISSN : 1347-5223
Print ISSN : 0009-2363
ISSN-L : 0009-2363
Current Topics: Regular Article
Rational Design of Amphipathic Antimicrobial Peptides with Alternating L-/D-Amino Acids That Form Helical Structures
Motoharu HiranoHidetomo Yokoo Nobumichi OhokaTakahito ItoTakashi MisawaMakoto ObaTakao InoueYosuke Demizu
Author information
JOURNAL FREE ACCESS FULL-TEXT HTML
Supplementary material

2024 Volume 72 Issue 2 Pages 149-154

Details
Abstract

Antimicrobial peptides (AMPs) are promising therapeutic agents against bacteria. We have previously reported an amphipathic AMP Stripe composed of cationic L-Lys and hydrophobic L-Leu/L-Ala residues, and Stripe exhibited potent antimicrobial activity against Gram-positive and Gram-negative bacteria. Gramicidin A (GA), composed of repeating sequences of L- and D-amino acids, has a unique β6.3-helix structure and exhibits broad antimicrobial activity. Inspired by the structural properties and antimicrobial activities of LD-alternating peptides such as GA, in this study, we designed Stripe derivatives with LD-alternating sequences. We found that simply alternating L- and D-amino acids in the Stripe sequence to give StripeLD caused a reduction in antimicrobial activity. In contrast, AltStripeLD, with cationic and hydrophobic amino acids rearranged to yield an amphipathic distribution when the peptide adopts a β6.3-helix, displayed higher antimicrobial activity than AltStripe. These results suggest that alternating L-/D-cationic and L-/D-hydrophobic amino acids in accordance with the helical structure of an AMP may be a useful way to improve antimicrobial activity and develop new AMP drugs.

Fullsize Image
Content from these authors
© 2024 The Pharmaceutical Society of Japan
Previous article Next article
feedback
Top