Chemical and Pharmaceutical Bulletin
Online ISSN : 1347-5223
Print ISSN : 0009-2363
ISSN-L : 0009-2363
Regular Article
Galangin Promotes Tendon Repair Mediated by Tendon-Derived Stem Cells through Activating the TGF-β1/Smad3 Signaling Pathway
Xiongwei Deng Qiang LiHaitao YuanHejun HuShaoyong Fan
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2024 Volume 72 Issue 7 Pages 669-675

Details
Abstract

Tendon injury is a prevalent orthopedic disease that currently lacks effective treatment. Galangin (GLN) is a vital flavonoid found abundantly in galangal and is known for its natural activity. This study aimed to investigate the GLN-mediated molecular mechanism of tendon-derived stem cells (TDSCs) in tendon repair. The TDSCs were characterized using alkaline phosphatase staining, alizarin red S staining, oil red O staining, and flow cytometry. The effect of GLN treatment on collagen deposition was evaluated using Sirius red staining and quantitative (q)PCR, while a Western bot was used to assess protein levels and analyze pathways. Results showed that GLN treatment not only increased the collagen deposition but also elevated the mRNA expression and protein levels of multiple tendon markers like collagen type I alpha 1 (COL1A1), decorin (DCN) and tenomodulin (TNMD) in TDSCs. Moreover, GLN was also found to upregulate the protein levels of transforming growth factor β1 (TGF-β1) and p-Smad3 to activate the TGF-β1/Smad3 signaling pathway, while GLN mediated collagen deposition in TDSCs was reversed by LY3200882, a TGF-β receptor inhibitor. The study concluded that GLN-mediated TDSCs enhanced tendon repair by activating the TGF-β1/Smad3 signaling pathway, suggesting a novel therapeutic option in treating tendon repair.

Fullsize Image
Content from these authors
© 2024 Author(s)
Published by The Pharmaceutical Society of Japan

This article is licensed under a Creative Commons [Attribution-NonCommercial 4.0 International] license.
https://creativecommons.org/licenses/by-nc/4.0/
Previous article Next article
feedback
Top