2025 Volume 73 Issue 3 Pages 257-263
Sucroferric oxyhydroxide is a phosphate binder for the treatment of hyperphosphatemia in patients with chronic kidney disease undergoing dialysis. This study aimed to determine the effects of tablet size, shape, and tensile strength on disintegration time and friability of sucroferric oxyhydroxide-containing mini-tablets. A linear relationship between the disintegration time and tensile strength was observed across all mini-tablets, except for those with smaller tablets (diameters: <1.8 mm). However, the relationship between friability and tensile strength was not significantly correlated under linear or exponential approximations. Explaining friability solely based on tensile strength was challenging, indicating the role of tablet shape. To visualize the effects of mini-tablet shapes and tensile strength on their disintegration time and friability, response aspects were analyzed. The response surface analysis revealed that the disintegration time was not affected by the tablet shape. The friability of the mini-tablets with a cup depth/diameter of 0.209 was lower (<0.2) than that of tablets with other cup depth/diameter across all tested ranges of tensile strength (1–6). A cup depth/diameter of 0.2 was identified as optimal for minimizing the friability of mini-tablets and can be implemented in commercial production without issues. In conclusion, tablet shape should be carefully considered during the development of mini-tablets to ensure low friability.