e-Journal of Surface Science and Nanotechnology
Online ISSN : 1348-0391
ISSN-L : 1348-0391
Conference -ACSIN-12&ICSPM21-
Preferential Formation of Layered Structure of Ionic Liquid at Ionic Liquid Aqueous Solution / Graphite Electrode Interfaces Observed by Frequency-Modulation Atomic Force Microscopy
Tomohiro HaradaYasuyuki YokotaAkihito ImanishiKen-ichi Fukui
著者情報
ジャーナル フリー
電子付録

2014 年 12 巻 p. 89-96

詳細
抄録
Local structure of ionic liquid (IL), 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM-BF4), at IL + water mixtures / highly-oriented pyrolytic graphite (HOPG) interfaces has been investigated using frequency-modulation atomic force microscopy (FM-AFM). The imaging study of surface topography and energy dissipation of IL + water / HOPG interfaces suggested that even the hydrophilic IL molecules favored the HOPG substrate forming stable layers of ILs whose layer thickness corresponded to the averaged ion-pair size. A threshold molar ratio (χIL) for the first IL layer formation was between 0.01 and 0.05 and the HOPG surface was completely covered by IL layer at as low as χIL = 0.1. Force curve measurements in various concentrations of IL + water mixtures also suggested that the liquid side nature such as the apparent viscosity near the interfaces changed around the critical concentration. Dissolution of the IL layer was found to be a slow process, suggesting that the interface structure was history-dependent. Furthermore, electrochemical potential of the HOPG substrate affected the IL layer formation. Particularly application of positive potential resulted in growth of IL layer at the interface. [DOI: 10.1380/ejssnt.2014.89]
著者関連情報

この記事はクリエイティブ・コモンズ [表示 4.0 国際]ライセンスの下に提供されています。
https://creativecommons.org/licenses/by/4.0/deed.ja
前の記事 次の記事
feedback
Top