Electrochemistry
Online ISSN : 2186-2451
Print ISSN : 1344-3542
ISSN-L : 1344-3542

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

CORRECTED PROOF
Rate Performance of LiCoO2 Half-cells Using Highly Concentrated Lithium Bis(fluorosulfonyl)amide Electrolytes and Their Relevance to Transport Properties
Shinji KONDOUKaoru DOKKOMasayoshi WATANABEKazuhide UENO
著者情報
ジャーナル オープンアクセス 早期公開
電子付録

論文ID: 21-00052

この記事には本公開記事があります。
CORRECTED PROOF: 2021/06/04
UNCORRECTED PROOF: 2021/05/25
ACCEPTED MANUSCRIPT: 2021/05/12
詳細
抄録

For the rapid charge-discharge performance of Li-ion batteries (LIBs), ionic conductivity (σ) and Li ion transference number (t+) are important parameters of electrolytes. Electrolytes with high t+ alleviate the concentration polarization upon fast charge-discharge, and prevent the diffusion-limited mass transfer of Li+ ions. Recent studies have suggested that certain highly concentrated electrolytes exhibit better rate performances than conventional organic electrolytes despite their lower σ. However, the relationship between the transport properties (t+ and σ) of highly concentrated electrolytes and the enhanced rate performance of LIBs is yet to be elucidated. To evaluate the rate performance of LIBs with highly concentrated electrolytes in terms of transport properties, we investigated the discharge rate capability of LiCoO2 (LCO) half-cells using highly concentrated lithium bis(fluorosulfonyl)amide (Li[FSA]) electrolyte in γ-butyrolactone (GBL), acetonitrile (AN), dimethyl carbonate (DMC), and 1,2-dimethoxyethane (DME) solvents. There was a remarkable solvent dependence of t+, and the highest tLi+current of 0.67 was observed for GBL-based electrolyte measured using the very-low-frequency impedance spectroscopy (VLF–IS) method. The LCO half-cell with GBL-based electrolyte delivered higher discharge capacities than the cells with DMC- and DME-based electrolytes at high current densities. The improved rate performance in GBL-based electrolytes was attributable to enhanced Li+ ion mass transfer derived from the high tLi+current. We demonstrated the importance of tLi+current on the rate capability of LCO half-cells with highly concentrated electrolytes for high-rate battery performance.

Fullsize Image
著者関連情報
© The Author(s) 2021. Published by ECSJ.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium provided the original work is properly cited. [DOI: 10.5796/electrochemistry.21-00052].
http://creativecommons.org/licenses/by/4.0/
feedback
Top