Abstract
Millimeter-wave (MMW) signal generation devices using difference frequency generation (DFG) based on the second order nonlinear optical effect in a rectangular waveguide were studied in detail theoretically and experimentally. The temporal and spatial coupling process of a generated MMW signal to a TE10 mode in a rectangular waveguide embedded with a nonlinear crystal was analyzed using the finite-difference time-domain (FDTD) method. In the experiment, 60 GHz-band signals were successfully obtained from fabricated proto-type devices using a rectangular waveguide embedded with z-cut LiTaO3 crystal.