IEICE Electronics Express
Online ISSN : 1349-2543
ISSN-L : 1349-2543
LETTER
A granular resampling method based energy-efficient architecture for heartbeat classification in ECG
Yin XuZhijian ChenXiaoyan XiangJianyi Meng
著者情報
ジャーナル フリー

2017 年 14 巻 22 号 p. 20170984

詳細
抄録

SVM-based granular resampling method is put forward to obtain a robust classification model for energy-efficient ECG systems. The classification model consists of a low-complexity model to filter most easy-to-learn heartbeats and a high-accuracy classifier to identify the remained heartbeats. Energy-efficient hardware architecture for multi-class heartbeat classification is implemented based on the classification model. The architecture optimizations include memory segmentation to reduce energy consumption and time domain reuse to save resources. We adopt 40-nm CMOS process to implement the proposed design. It provides an average prediction speedup by 57.21% and a significant energy dissipation reduction by 52.22% per classification compared with the design without low-complexity models.

著者関連情報
© 2017 by The Institute of Electronics, Information and Communication Engineers
前の記事 次の記事
feedback
Top