IEICE Electronics Express
Online ISSN : 1349-2543
ISSN-L : 1349-2543

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

A granular resampling method based energy-efficient architecture for heartbeat classification in ECG
Yin XuZhijian ChenXiaoyan XiangJianyi Meng
著者情報
ジャーナル フリー 早期公開

論文ID: 14.20170984

この記事には本公開記事があります。
詳細
抄録

SVM-based granular resampling method is put forward to obtain a robust classification model for energy-efficient ECG systems. The classification model consists of a low-complexity model to filter most easy-to-learn heartbeats and a high-accuracy classifier to identify the remained heartbeats. Energy-efficient hardware architecture for multi-class heartbeat classification is implemented based on the classification model. The architecture optimizations include memory segmentation to reduce energy consumption and time domain reuse to save resources. We adopt 40-nm CMOS process to implement the proposed design. It provides an average prediction speedup by 57.21% and a significant energy dissipation reduction by 52.22% per classification compared with the design without low-complexity models.

著者関連情報
© 2017 by The Institute of Electronics, Information and Communication Engineers
feedback
Top