IEICE Electronics Express
Online ISSN : 1349-2543
ISSN-L : 1349-2543

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

An adaptive neural network A/D converter based on CMOS/memristor hybrid design
Weiwei WangZhiqiang YouPeng LiuJishun Kuang
著者情報
ジャーナル フリー 早期公開

論文ID: 11.20141012

この記事には本公開記事があります。
詳細
抄録
A memristor is regarded as a promising device for modeling synapses in the realization of artificial neural systems for its nanoscale size, analog storage properties, low energy and non-volatility. In this letter, an adaptive T-Model neural network based on CMOS/memristor hybrid design is proposed to perform the analog-to-digital conversion without oscillations. The circuit is composed of CMOS neurons and memristor synapses. The A/D converter (ADC) is trained by the least mean square (LMS) algorithm. The conductance of the memristors can be adjusted to convert input voltages with different ranges, which makes the ADC flexible. Using memristors as synapses in neuromorphic circuits can potentially offer high density.
著者関連情報
© 2014 by The Institute of Electronics, Information and Communication Engineers
feedback
Top