IEICE Electronics Express
Online ISSN : 1349-2543
ISSN-L : 1349-2543

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Microwave renal denervation temperature prediction using hybrid machine learning: in silico evaluation using human body model
Aditya RakhmadiTohgo HosodaKazuyuki Saito
著者情報
ジャーナル フリー 早期公開

論文ID: 20.20230118

この記事には本公開記事があります。
詳細
抄録

Transcatheter renal denervation (RDN) has emerged as a novel treatment option to lower blood pressure (BP) by ablating the renal nerve. However, inconsistent results of failing to reduce BP were reported, primarily due to the inability to confirm ablation temperature at the treatment area. In order to address this, we proposed a microwave balloon catheter with a hybrid machine learning (ML) algorithm to achieve a deeper ablation and predict the temperature. Through an in silico evaluation using a human body model TARO, the proposed method achieved 1.5°C difference compared to simulation using TARO, showing the proposed ML method capability.

著者関連情報
© 2023 by The Institute of Electronics, Information and Communication Engineers
feedback
Top