IEICE Electronics Express
Online ISSN : 1349-2543
ISSN-L : 1349-2543
LETTER
Microwave renal denervation temperature prediction using hybrid machine learning: in silico evaluation using human body model
Aditya RakhmadiTohgo HosodaKazuyuki Saito
著者情報
ジャーナル フリー

2023 年 20 巻 11 号 p. 20230118

詳細
抄録

Transcatheter renal denervation (RDN) has emerged as a novel treatment option to lower blood pressure (BP) by ablating the renal nerve. However, inconsistent results of failing to reduce BP were reported, primarily due to the inability to confirm ablation temperature at the treatment area. In order to address this, we proposed a microwave balloon catheter with a hybrid machine learning (ML) algorithm to achieve a deeper ablation and predict the temperature. Through an in silico evaluation using a human body model TARO, the proposed method achieved 1.5°C difference compared to simulation using TARO, showing the proposed ML method capability.

著者関連情報
© 2023 by The Institute of Electronics, Information and Communication Engineers
前の記事 次の記事
feedback
Top