Endocrine Journal
Online ISSN : 1348-4540
Print ISSN : 0918-8959
ISSN-L : 0918-8959
ORIGINAL
Lapatinib decreases the ACTH production and proliferation of corticotroph tumor cells
Yuko AsariKazunori KageyamaAya SugiyamaHikaru KogawaKanako NiiokaMakoto Daimon
Author information
JOURNAL FREE ACCESS FULL-TEXT HTML

2019 Volume 66 Issue 6 Pages 515-522

Details
Abstract

Cushing’s disease is almost always caused by hypersecretion of adrenocorticotropic hormone (ACTH) from a pituitary adenoma. A mutation in the deubiquitinase gene USP8 has been found in human ACTH-producing pituitary adenoma cells. This mutational hotspot hyperactivates USP8, rescuing epidermal growth factor receptor (EGFR) from lysosomal degradation and ensuring its sustained signaling in Cushing’s disease. An EGFR inhibitor would be an effective anti-tumor agent in EGFR-related tumors. We investigated the effect of a potent dual tyrosine kinase inhibitor, lapatinib, on ACTH production and cell proliferation in AtT-20 mouse corticotroph tumor cells. Lapatinib decreased proopiomelanocortin (Pomc) mRNA levels and ACTH levels in AtT-20 cells and also inhibited cell proliferation, induced apoptosis, and decreased pituitary tumor-transforming gene 1 (Pttg1), a hallmark of pituitary tumors, mRNA levels. KSN/Slc nude mice were subcutaneously inoculated with AtT-20 cells. After 1 week, the mice were randomized either to control or lapatinib groups. The inhibitor decreased the tumor weight of AtT-20 allografts in vivo versus control mice. Lapatinib also significantly decreased Pomc and Pttg1 mRNA levels in the tumor and plasma ACTH and corticosterone levels in vivo. Thus, lapatinib decreases the ACTH production and proliferation of corticotroph tumor cells. An EGFR-targeting therapy could be an important treatment for Cushing’s disease.

Content from these authors
© The Japan Endocrine Society
Previous article Next article
feedback
Top