Food Science and Technology Research
Online ISSN : 1881-3984
Print ISSN : 1344-6606
ISSN-L : 1344-6606
Reviews
Polyphenols-absorption and occurrence in the body system
Toshiro Matsui
Author information
JOURNAL FREE ACCESS FULL-TEXT HTML

2022 Volume 28 Issue 1 Pages 13-33

Details
Abstract

Polyphenols are commonly present in natural plants and serve as health benefiting food compounds. The health benefits and the metabolites of polyphenols have not yet been fully investigated because of lack of information about their bioavailability. This review was based on the previously reported literature focusing on the absorption and tissue accumulation of polyphenols. Furthermore, the physiological roles and the influx/efflux route(s) of non-absorbable polyphenols in the intestinal membrane were discussed.

Introduction

Polyphenols are commonly present as secondary metabolic phytochemicals that naturally occur in plant components, including herbs, fruits, and vegetables. Although they were initially known to be natural pigments in plants, their predominant function is to protect the plant against environmental stresses, including light oxidation, pathogens, and predators (Bravo, 1998). Polyphenols are made of two or more benzene rings, each having at least one hydroxyl group. More than 8 000 polyphenols have been identified (Tsao, 2010) and are commonly present in human plant-based foods consumed daily worldwide (Bravo, 1998; Scalbert and Williamson, 2000).

The scientific interests in polyphenols appear to be because of their physiological potentials in maintaining human health or homeostasis, because the “French paradox”, a reduced incidence of cardiovascular disease (CVD), is associated with healthy “Mediterranean diet” characterized by low consumption of butter and high consumption of vegetables, fruits, cheese, and red wine (or wine polyphenols, like resveratrol) (Renaud and de Lorgeril, 1992; Catalgol et al., 2012). Moreover, epidemiological studies have shown the beneficial effects of polyphenols on human health (Medina-Remon et al., 2017; Tresserra-Rimbau et al., 2014). Clinical trials showed that an increased intake of dietary flavonoids, particularly flavanones, was associated with a significant decrease in postprandial lipid response (triglycerides and cholesterol) in the circulating bloodstream (Vetrani et al., 2018). A clinical report by Vabeiryureilai and Lalrinzuali (2015) indicated the protective effect of polyphenols against vessel dysfunction by a daily intake of hesperidin (500 mg/day) for 3 weeks, in which an increase in nitrogen monoxide (NO) production and a decrease in circulating inflammatory biomarkers was observed. Moreover, it is well established that polyphenols (in particular, flavonoids) exhibit beneficial effects against the development of chronic degenerative diseases, such as diabetes, hypertension, and lipidemia in human studies (Table 1). For every bioactive compound listed in Table 1, the efficiency of its physiological functions must be determined by the bioavailability of polyphenols (Scalbert and Williamson, 2000; Wang, et al., 2017), but the understanding of their fate after intake is still insufficient and needs to be further investigated. Furthermore, while the functions of absorbed substances primarily depend on their bioavailability, their metabolism during absorption process is also crucial for the compound's physiological activity (Williamson et al., 2018). Indeed, the number and specific positions of the hydroxyl groups on the flavanones' aromatic rings have a great influence on their physiological effects (Barreca et al., 2017). However, further inquiries regarding the metabolites of polyphenols as well as their bioavailability are needed. Although mono-phenolic acids, such as chlorogenic acid and ferulic acid, are out of the category of polyphenols, we will also discuss their bioavailability because of common naturally occurring phenols.

Table 1. Health benefits of polyphenols in humans
Family Class Compound Health benefit Reference
Flavonoids
Flavonols Quercetin Anti-hypertensive Zahedi et al., 2013
Cardio protective Egert et al., 2009
Flavanones Naringenin Anti-hypertensive Habauzit et al., 2015
Hesperidin Anti-hypertensive Morand et al., 2011
Anti-inflammatory Homayouni et al., 2018
Naringin Anti-hypertensive
Lipid-lowering
Reshef et al., 2005
Toth et al., 2016
Lipid & cholesterol-lowering Jung et al., 2003
Isoflavones Genistein Cholesterol-lowering Lazarevic et al., 2011
Catechins Green tea extract Anti-hypertensive
Anti-hyperlipidemia
Islam, 2012
Others Resveratrol Anti-diabetes Brasnyó et al., 2011
Anti-inflammatory Espinoza et al., 2017
Curcumin Anti-inflammatory Ganjali et al., 2014
Lipid-lowering Yang et al., 2014
Anti-diabetes Chuengsamarn et al., 2012

Absorption of polyphenols in the circulatory bloodstream

Intestinal transport routes of polyphenols.    Nutrients are incorporated into our body system mainly by crossing the intestinal membrane. Except for minerals and hydrophobic compounds (vitamin E, drugs, etc.) transported via the passive paracellular or transcellular (epithelial tight junction, TJ) transport system, most nutrients (monosaccharides, amino acids, di-/tripeptides, organic acids, fatty acids, and sterols) are recognized by intestinal transporters located at the brush border membrane of the apical side of the enterocytes, and are absorbed during the first and second phases (I/II) metabolism (Shimizu, 2010). These intestinal transporters include sodium-dependent glucose transporter 1 (SGLT1) (Turk et al., 1994) for glucose, peptide transporter 1 (PepT1) for di/tripeptides (Meredith and Price, 2006), apical sodium dependent-bile acid transporter (ASBT) (Claro et al., 2013), nucleoside transporters (NTs) (Baldwin et al., 2004), organic anion transporting polypeptides (OATP) (Yu et al., 2017), and monocarboxylate transporters (MCTs) for organic acids (Halestrap and Wilson, 2012). Once the nutrients are incorporated into the intracellular intestinal membrane via the influx transporters, they are either pumped out to the gut via the efflux ATP binding cassette (ABC) family transporters, including breast cancer resistance protein (BCRP), multidrug resistance protein 2 (MRP2), and P-glycoprotein (P-gp) (Chen et al., 2016), or are subjected to degradation via processes, such as phase I hydrolysis, demethylation (Booth et al., 1958; Nielsen et al., 1998), and methylation (Miyake et al., 2000). Subsequently, in phase II, the incorporated compounds are also susceptible to sulfation and glucuronidation, and their combination reactions at the position of hydroxyl group (Bravo et al., 1998). Mass spectrometry (MS), in particular, matrix-assisted laser desorption/ionization (MALDI)-MS in combination with imaging techniques, is a powerful tool to comprehensively analyze such metabolites, as imaging can provide visual evidence about the location and production of metabolites by non-targeted MS (Nguyen et al., 2016; 2019). As shown in Fig. 1, the transport behavior of epicatechin-3-O-gallate (ECG) through rat's jejunum membrane as well as the preferable metabolism of ECG to sulfated and methyl/sulfated conjugates at the microvillus region of intestinal membrane is successfully visualized by imaging (Nguyen et al., 2019). The visualized metabolic behavior of ECG at rat's jejunum membrane also revealed the preferable (or rapid) conversion of intact ECG to sulfated ECG rather than glucuronidation (Fig. 1). The phase II metabolic behavior is in line with the preferable methylation and sulfation metabolism of catechins reported previously (Donovan et al., 2001; Actis-Goretta et al., 2013). For macromolecules, microfold (M) cells in the follicle-associated envelope of Peyer's patches or endocytosis route may be involved in the absorption. However, polyphenols have no specific transporter route; for example, catechins were reported to cross via passive TJ and/or active carrier-mediated transporter routes, which were different from types of catechins (Konishi et al., 2003). Therefore, it appears that the transport routes of polyphenols are not restrictive and vary based on their structural and molecular characteristics. Thus, the characteristics (hydrophobicity, molecular size, functional group, etc.) of polyphenols regulating their intestinal transport routes remain unclear and further studies based on in silico and molecular targeting analyses are required.

Fig. 1.

Visualized absorption behavior of epicatechin-3-O-gallate (ECG) across rat intestinal membrane through matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) imaging

Absorption of polyphenols in animal bloodstream.    The extent of absorption, metabolism, and/or organ distribution may determine the reported physiological functions of polyphenols (Scalbert and Williamson, 2000; Scalbert et al., 2011). Table 2 summarizes the absorption properties of polyphenols in animal and human bloodstreams reported so far. As mentioned above, since some polyphenols are metabolized to form sulfated/glucuronided conjugates during intestinal transport, it should be noted whether intact or conjugated forms of polyphenols are used to evaluate the absorption amount in literature. Some studies reported absorption as the amount of intact form in the circulating bloodstream, whereas others reported a total of intact and conjugated forms (by deconjugation treatment with sulfatase/β-glucuronidase). However, considering that the definition of bioavailability or absorption / distribution / metabolism / excretion (ADME) denotes the absorbability of “physiologically active” forms, polyphenols showing less bioactivity must be excluded from the evaluation of absorption kinetics; therefore, analysis of the physiological functions of intact and/or conjugated polyphenols should be done together with the kinetic studies. As summarized in Table 2, the absorption of polyphenols in the bloodstream varies from Cmax of 0.0005 µmol/L for puerarin to 10,378 µmol/L for quercetin-3-O-glucuronide. Within the limited data included in this review, the magnitude of Cmax for most polyphenols in the bloodstream may lie in sub-micromolar to sub-millimolar ranges. The Tmax of most polyphenols is < 3 h, indicating that polyphenols are rapidly absorbed into the circulatory bloodstream after their intake. It appears that higher doses result in higher absorption of epigallocatechin-3-O-gallate (EGCG, 200–800 mg in human), naringin (10.5–168 mg/kg in Sprague-Dawley rats), and resveratrol (20–150 mg in human). Notably, the molecular size of polyphenols may not be a determining factor for their absorption. In contrast, the hydrophobicity or log P of polyphenols partly regulate intestinal absorption, as reported in literature (Sugawara et al., 2001; Murota et al., 2002) and in Table 2 for glyceollins (glyceollin I: area under the curve for 8 h, AUC0–8 h, 8.5 µmol·h/L; log P, 3.91 > glyceollin III: 1.0 µmol·h/L; log P, 3.60 > daidzein: 0.6 µmol·h/L; log P, 2.63). However, a comparative evaluation of absorption of various polyphenols (e.g., naringin, lutein, and quercetin in Table 2) cannot be done since the results were obtained from different scenarios, including dose, targeting analyte (intact, conjugates, or individual conjugate), and animal species. Furthermore, a quantitative assay method for polyphenol-administered blood using HPLC, LC-MS, or LC-tandem MS, with the aid of internal standard, like taxifolin (Zhang et al., 2020), is needed to determine reliable absorption profiles.

Table 2. Pharmacokinetics of polyphenols in the bloodstream after oral administration.
Polyphenols Sub-category Compound Dose Metabolite(s) monitored AUC (µmol/L·h)
0→t
0→t(h) AUC (µmol/L·h)
0→∞
Cmax (µmol/L) Tmax(h) T1/2(h) Reference
Flavonoids
Anthocyanin
Delphinidin-3-rutinoside 489 mg/kg
(Wistar rats n=3)
Intact 1.33 4 n.a. 0.58 · 0.41 2 0.8 Matsumoto et al., 2001
Cyanidin-3-rutinoside 476 mg/kg
(Wistar rats n=3)
Intact 2.54 4 n.a. 0.85 ± 0.12 0.5 1.4 ibid.
Cyanidin-3-glucoside 359 mg/kg
(Wistar rats n=3)
Intact 1.51 4 n.a. 0.84 ± 0.19 0.5 2.1 ibid.
Delphinidin-3-rutinoside 1.68 mg/kg
(human n=8)
Intact 0.288 ± 0.110 8 n.a. 0.073 ± 0.035 1.8 3.2 ibid.
Cyanidin-3-rutinoside 1.24 mg/kg
(human n=8)
Intact 0.168 ± 0.075 8 n.a. 0.046 ± 0.023 1.5 3.5 ibid.
Delphinidin-3-glucoside 0.488 mg/kg
(human n=8)
Intact 0.069 ± 0.027 8 n.a. 0.023 ± 0.012 1.5 4.2 ibid.
Cyanidin-3-glucoside 0.165 mg/kg
(human n=8)
Intact 0.009 ± 0.007 8 n.a. 0.005 ± 0.004 1.3 1.3 ibid.
Cyanidin-3-glucoside 500 mg/kg
(human n=8)
Intact 0.28 ± 0.17 (SE) 48 n.a. 0.14 ± 0.07 (SE) 1.8 0.4 de Ferrars et al., 2014
Flavanol
Epicatechin 2.9 mg
(Wistar rats n=5)
Intact + conjugates 83.6 ± 39.8 24 n.a. 6.4±5.1 0.7 2.4 Abrahamse et al., 2005
Epigallocatechin-3-O-gallate 200 mg
(human n=5)
Intact 0.81 ± 0.27 (SE) 24 n.a. 0.16 ± 0.06 (SE) 2.1 2 Chow et al., 2001
Epigallocatechin-3-O-gallate 400 mg
(human n=5)
Intact 1.29 ± 0.78 (SE) 24 n.a. 0.24 ± 0.22 (SE) 1.8 2.7 ibid.
Epigallocatechin-3-O-gallate 600 mg
(human n=5)
Intact 3.71 ± 3.63 (SE) 24 n.a. 0.37 ± 0.31 (SE) 3 3.1 ibid.
Epigallocatechin-3-O-gallate 800 mg
(human n=5)
Intact 6.08 ± 2.07 (SE) 24 n.a. 0.96 ± 0.62 (SE) 4 1.9 ibid.
Flavanone
Hesperidin 10 mg/kg
(SD rats n=3)
Intact + conjugates 6.4±0.9 (SE) 24 n.a. 0.49±0.10 (SE) 16 n.a. Nectoux et al., 2019
Hesperetin 135 mg
(human n=6)
Intact + conjugates 14.23 ± 5.62 12 16.03 ± 5.54 2.73 ± 1.36 3.7 3.1 Kanaze et al., 2007
Naringin 42 mg/kg
(SD rats n=12)
Intact 0.79 ± 0.19 (SE) 36 1.04 ± 0.23 0.31 ± 0.11 (SE) 0.5 9.5 Zeng et al., 2019
Naringin 42 mg/kg
(SD rats n=12)
Metabolites
(Naringenin + glucuronide)
121.6 ± 17.8 (SE) 36 122.8 ± 17.7 12.9 ± 1.6 (SE) 8.8 3.2 ibid.
Naringin 10.5 mg/kg
(SD rats n=10)
Intact + glucuronide 0.056 ± 0.048 24 0.061 ± 0.050 0.055 ± 0.023 1.5 0.3 Bai et al., 2020
Flavanone
Naringin 21 mg/kg
(SD rats n=10)
Intact + glucuronide 0.059 ± 0.035 24 0.066 ± 0.037 0.053 ± 0.028 1.5 0.5 ibid.
Naringin 42 mg/kg
(SD rats n=10)
Intact + glucuronide 0.070 ± 0.088 24 0.078 ± 0.095 0.091 ± 0.136 1.2 0.5 ibid.
Naringin 168 mg/kg
(SD rats n=10)
Intact + glucuronide 0.24 ± 0.11 24 0.25 ± 0.11 0.18 ± 0.13 2.9 0.7 ibid.
Naringin 3.1 mg/kg
(Beagle dogs n=6)
Intact + glucuronide 0.19 ± 0.10 12 0.22 ± 0.13 0.069 ± 0.018 1.3 1.8 ibid.
Naringin 12.4 mg/kg
(Beagle dogs n=6)
Intact + glucuronide 0.21 ± 0.56 12 0.23 ± 0.06 0.12 ± 0.03 1 1.3 ibid.
Naringin 49.6 mg/kg
(Beagle dogs n=6)
Intact + glucuronide 0.36 ± 0.16 12 0.39 ± 0.18 0.18 ± 0.13 1 1.3 ibid.
Naringin 40 mg
(human n=10)
Intact + glucuronide 0.013 ± 0.006 10 0.017 ± 0.007 0.004 ± 0.001 2 2.5 ibid.
Naringin 80 mg
(human n=10)
Intact + glucuronide 0.016 ± 0.006 36 0.021 ± 0.005 0.005 ± 0.002 2.1 1.9 ibid.
Naringin 160 mg
(human n=10)
Intact + glucuronide 0.027 ± 0.013 36 0.039 ± 0.016 0.007 ± 0.005 2.5 3.6 ibid.
Naringin 320 mg
(human n=10)
Intact + glucuronide 0.065 ± 0.055 36 0.069 ± 0.055 0.019 ± 0.021 1.7 2.5 ibid.
Naringin 480 mg
(human n=10)
Intact + glucuronide 0.033 ± 0.014 36 0.037 ± 0.014 0.010 ± 0.005 1.7 2 ibid.
Naringenin 30 mg/kg
(SD rats n=6)
Intact 1.87 ± 1.78 24 2.09 ± 2.22 0.44 ± 0.35 0.5 5.4 Xu et al., 2020
Naringenin 30 mg/kg
(Wistar rats n=10)
Intact 3.5 48 3.5 10.7 0.1 n.a. Ma et al., 2006
Naringenin 30 mg/kg
(Wistar rats n=10)
Intact + glucuronide 113 48 113 62 0.5 n.a. ibid.
Naringenin 90 mg/kg
(Wistar rats n=10)
Intact 66.3 48 66.3 13.7 0.3 n.a. ibid.
Naringenin 90 mg/kg
(Wistar rats n=10)
Intact + glucuronide 488 48 488 102 2 n.a. ibid.
Naringenin 270 mg/kg
(Wistar rats n=10)
Intact 80.4 48 80.4 16.2 0.1 n.a. ibid.
Naringenin 270 mg/kg
(Wistar rats n=10)
Intact + glucuronide 1701 48 1664 161 2 n.a. ibid.
Naringenin 135 mg
(human n=6)
Intact + conjugates 32.48 ± 10.02 12 34.62 ± 10.87 7.38 ± 2.83 3.7 2.3 Kanaze et al., 2007
Flavone
Apigenin 10 mg/kg
(Wistar rats n=5)
Intact 542 ± 231 24 n.a. 79.1 ± 23.8 3.6 7.8 Alshehri et al., 2019
Apigenin 50 mg/kg
(Wistar rats n = n.a.)
Intact 0.54 ± 0.23 (SE) 24 n.a. 0.08 ± 0.02 (SE) 3.6 7.8 Altamimi et al., 2018
Apigenin 100 mg/kg
(SD rats n=6)
Intact 20.5 ± 9.1 24 n.a. 2.48 ± 0.63 2.2 n.a. Huang et al., 2019
Luteolin 5.72 mg/kg
(SD rats n=6)
Intact n.a. n.a. 0.78 ± 0.09 0.65 ± 0.04 0.1 3.5 Deng et al., 2017
Luteolin 14.3 mg/kg
(SD rats n=5)
Intact n.a. n.a. 373.8 ± 7.7 6.88 ± 0.52 1 4.9 Zhou, P. et al., 2008
Luteolin 30 mg/kg
(Wistar rats n=50)
Intact 10.1 ± 2.4 10 12.0 ± 2.5 3.13 ± 0.78 0.5 3.7 Chen et al., 2010
Luteolin 100 mg/kg
(SD rats n=6)
Intact n.a. n.a. 35.6 ± 5.2 (SE) 10.7 ± 2.5 (SE) 4.8 2.2 Lin et al., 2015
Luteolin 200 mg/kg
(SD rats n=6)
Intact 109.7 ± 24.8 24 110.3 ± 25.0 22.3 ± 4.8 2 4.7 Shi et al., 2018
Luteo-7-glucoside 1000 mg/kg
(SD rats n=6)
Intact n.a. n.a. 78.4 ± 13.0 (SE) 6.78 ± 1.70 (SE) 4.8 11.4 Lin et al., 2015
Flavonol
Morin 25 mg/kg
(SD rats n=6)
Intact 2.80 ± 0.68 (SE) 24 n.a. 3.1 ± 0.8 (SE) n.a. n.a. Hou et al 2010
Morin 25 mg/kg
(SD rats n=6)
Intact + conjugates 16.0 ± 6.8 (SE) 24 n.a. 18.5 ± 7.2 (SE) n.a. n.a. ibid.
Morin 50 mg/kg
(SD rats n=6)
Intact 104.5 ± 22.7 (SE) 24 n.a. 84.9 ± 18.1 (SE) n.a. n.a. ibid.
Morin 50 mg/kg
(SD rats n=6)
Intact + conjugates 47.5 ± 14.6 (SE) 24 n.a. 20.9 ± 6.2 (SE) n.a. n.a. ibid.
Rutin 75 mg/kg
(Wistar rats n=5)
Intact + conjugates n.a. n.a. 13.55 ± 0.75 1.53 ± 0.16 6 3.3 Dominguez Moré et al., 2021
Rutin 100 mg/kg
(Wistar rats n=5)
Intact + conjugates n.a. n.a. 17.30 ± 1.55 2.08 ± 0.32 6 3.1 ibid.
Rutin 200 mg/kg
(Wistar rats n=5)
Intact + conjugates 926 ± 515 48 n.a. 28.9± 18.7 20.8 n.a. Nishijima et al., 2009
Rutin 16 mg
(human n=12)
Intact + conjugates 0.79 ± 0.18 32 n.a. 0.04 6.5 n.a. Erlund et al., 2000
Rutin 40 mg
(human n=12)
Intact + conjugates 1.30 ± 0.22 32 n.a. 0.08 7.4 n.a. ibid.
Rutin 100 mg
(human=12)
Intact + conjugates 1.97 ± 0.67 32 n.a. 0.15 7.5 n.a. ibid.
Rutin 108 mg
(human n=12)
Intact + conjugates 4.10 ± 3.60 24 n.a. 0.52 ± 0.56 7 11.8 Graefe et al., 2001
Isoquercetin 50 mg/kg
(SD rats n=5)
Intact 0.06 ± 0.03 24 n.a. 0.0008 ± 0.0002 0.5 0.7 Yin et al., 2019
Quercetin 3 mg kg
(Wistar rats n=5)
Intact + conjugates 77.5 ± 35.8 24 n.a. 2.6 ± 1.3 1.3 9.5 Abrahamse et al., 2005
Quercetin 10 mg/kg
(SD rats n=5)
Intact 34.4 ± 9.6 12 n.a. 9.63 ± 9.17 0.6 10 Abdelkawy et al., 2017
Quercetin 10 mg/kg
(SD rats n=5)
Intact n.a. n.a. 0.199 0.662 0.1 n.a. Chen et al., 2005
Quercetin 10 mg/kg
(SD rats n=5)
Conjugates n.a. n.a. 48.41 9.694 0.3 n.a. ibid.
Quercetin 15 mg/kg
(SD rats n=6)
Intact + conjugates 2.6 ± 0.7 (SE) 12 n.a. 0.26 ± 0.06 (SE) n.a. n.a. Makino et al., 2009
Quercetin 25 mg/kg
(Wistar rats n=6)
Intact 1.82 ± 0.83 48 n.a. 1.22 ± 0.27 1 0.5 Peñalva et al., 2019
Quercetin 50 mg/kg
(Wistar rats n=5)
Intact 187 ± 31 48 n.a. 19.5 ± 4.1 5 5.8 Li et al., 2009
Quercetin 50 mg/kg
(Wistar rats n=5)
Intact + conjugates 25.3 ± 6.4 24 n.a. 3.48 ± 0.72 1.8 n.a. Nishijima et al., 2009
Quercetin 50 mg/kg
(SD rats n=5)
Intact 151 ± 24 72 167 ± 23 6.65 ± 1.29 n.a. 35.5 Wang et al., 2017
Quercetin 50 mg/kg
(SD rats n=5)
Intact 143 ± 54 24 n.a. 0.025 ± 0.009 0.9 7.3 Yin et al., 2019
Quercetin 50 mg/kg
(SD rats n=6)
Intact + conjugates 48.4 ± 3.8 (SE) 24 n.a. 4.9 ± 1.0 (SE) n.a. n.a. Hou et al., 2010
Quercetin 100 mg/kg
(SD rats n=6)
Intact + conjugates 80.3 ± 6.4 (SE) 24 n.a. 9.5 ± 1.6 (SE) n.a. n.a. ibid.
Quercetin 100 mg/kg
(SD rats n=6)
Intact 5241 ± 1930 24 5285 ± 1951 2786 ± 1682 0.3 0.8 Yang et al., 2016
Quercetin 8 mg
(human n=12)
Intact + conjugates 2.08 ± 0.15 (SE) 32 n.a. 0.14 1.9 17.1 Erlund et al., 2000
Quercetin 20 mg
(human n=12)
Intact + conjugates 3.50 ± 0.17 (SE) 32 n.a. 0.22 2.7 17.7 ibid.
Quercetin 50 mg
(human n=12)
Intact + conjugates 4.38 ± 0.30 (SE) 32 n.a. 0.285 4.9 15.1 ibid.
Quercetin 1095 mg
(human n=9)
Intact + conjugates 11.6 ± 1.0 (SE) 24 n.a. 1.10 ± 0.13 (SE) 5.7 8.9 Guo et al., 2013
Quercetin-4′-O-glucoside 71 mg/kg
(human n=12)
Intact + conjugates 18.13 ± 19.64 24 n.a. 4.58 ± 3.52 0.7 11.9 Graefe et al., 2001
Quercetin-3-O-glucuronide 50 mg/kg
(SD rats n=5)
Intact 33.5 ± 21.0 24 n.a. 4.26 ± 1.78 3.7 6.3 Yin et al., 2019
Quercetin-3-O-glucuronide 100 mg/kg
(SD rats n=5)
Intact 51474 ± 3269 24 65486 ± 22353 10378 ± 2289 3.1 2.6 Yang et al., 2016
Kaempferol 25 mg/kg
(SD rats n=6)
Intact 37.29 24 38.21 5.95 2 5.1 Zhang et al., 2010
Kaempferol 25 mg/kg
(SD rats n=6)
Glucuronide 78.34 24 81.57 7.34 9 4.1 ibid.
Kaempferol 50 mg/kg
(SD rats n=6)
Intact 55.81 24 66.97 8.21 2 7.2 ibid.
Kaempferol 50 mg/kg
(SD rats n=6)
Glucuronide 225.55 24 237 21.15 9 4.3 ibid.
Kaempferol 100 mg/kg
(SD rats n=4)
Intact 3.11 ± 0.07 12 n.a. 0.63 ± 0.03 1.5 5.3 Zhou et al., 2016
Kaempferol 250 mg/kg
(SD rats n=4)
Intact 5.28 ± 0.25 12 n.a. 1.61 ± 0.10 1 3.5 ibid.
Kaempferol 1250 mg/kg
(SD rats n=6)
Intact n.a. n.a. 2.55 ± 0.10 0.58 ± 0.01 1.1 3.3 Zhang et al., 2009
Kaempferol 2500 mg/kg
(SD rats n=6)
Intact n.a. n.a. 6.04 ± 0.20 0.81 ± 0.02 1.2 9.3 ibid.
Isorhamnetin 0.25 mg/kg
(Wistar rats n=6)
Intact + conjugates 2.65 ± 0.56 60 2.73 ± 0.65 0.18 ± 0.06 8 8.4 Lan et al., 2007
Isorhamnetin 0.5 mg/kg
(Wistar rats n=6)
Intact + conjugates 3.99 ± 1.09 60 4.19 ± 1.03 0.20 ± 0.05 6.4 11.4 ibid.
Isorhamnetin 1 mg/kg
(Wistar rats n=6)
Intact + conjugates 5.13 ± 1.47 60 5.48 ± 1.30 0.24 ± 0.02 7.2 11.2 ibid.
Isoflavone
Genistein 6.25 mg/kg
(SD rats n=6)
Intact 1.45 36 1.67 0.39 0.2 3.2 Zhou, S. et al., 2008
Genistein 6.25 mg/kg
(SD rats n=6)
Glucuronide 10.7 36 11 13.2 0.2 2.2 ibid.
Genistein 12.5 mg/kg
(SD rats n=6)
Intact 4.99 36 5.11 0.95 0.2 8.5 ibid.
Genistein 12.5 mg/kg
(SD rats n=6)
Glucuronide 29 36 30.2 18.3 0.2 6.3 ibid.
Genistein 50 mg/kg
(SD rats n=6)
Intact 11 36 11.3 2.77 0.2 8.4 ibid.
Genistein 50 mg/kg
(SD rats n=6)
Glucuronide 106 36 108 33.5 0.2 7.2 ibid.
Genistein 30 mg/kg
(human n=10)
Intact 9.59 ± 3.13 48 9.76 ± 3.25 0.89 ± 0.29 4 7.6 Ullmann et al., 2005
Genistein 60 mg/kg
(human n=10)
Intact 23.9 ± 7.4 48 24.3 ± 17.8 2.04 ± 0.97 5 7.5 ibid.
Genistein 150 mg/kg
(human n=10)
Intact 71.6 ± 31.2 48 73.2 ± 32.4 5.49 ± 1.24 5 8 ibid.
Genistein 300 mg/kg
(human n=10)
Intact 96.7 ± 32.8 48 96.7 ± 39.7 6.56 ± 1.39 6 9.5 ibid.
Daidzein 1.0 mg/kg
(SD rats n=4)
Intact + conjugates 0.6 ± 0.1 8 n.a. 0.11 ± 0.03 8 n.a. Zhang et al., 2020
Daidzein 10 mg/kg
(SD rats n=3)
Intact 1.45 ± 0.40 12 n.a. 0.52 ± 0.12 0.4 n.a. Shen et al., 2011
Daidzein 10 mg/kg
(Wistar rats n=6)
Intact + conjugates 36.0 ± 6.2 24 45.0 ± 8.7 2.78 ± 0.36 6.5 n.a. Panizzon et al., 2019
Daidzein 15 mg/kg
(SD rats m=6)
Intact 0.65 ± 0.12 24 0.72 ± 0.09 0.102 ± 0.008 2.7 6 Li, Y. et al., 2021
Daidzein (in 0.5% CMCNa) 20 mg/kg
(SD rats n=6)
Intact 6.33 ± 3.22 48 6.35 ± 3.26 0.50± 0.19 5 4.6 Qiu et al., 2005
Daidzein (in 0.5% CMCNa) 20 mg/kg
(SD rats n=6)
Glucuronide 10.4 ± 6.4 48 10.8 ± 6.8 0.76 ± 0.22 3.7 10.3 ibid.
Daidzein (in 0.9% NaCl solution) 20 mg/kg
(SD rats n=6)
Intact 13.3 ± 11.7 48 13.3 ± 11.7 2.36 ± 1.19 0.5 3.4 ibid.
Daidzein (in 0.9% NaCl solution) 20 mg/kg
(SD rats n=6)
Glucuronide 59.1 ± 52.4 48 60.3 ± 52.4 11.8 ± 9.7 0.4 10.8 ibid.
Daidzein 100 mg/kg
(SD rats n=6)
Intact 31.7 ± 14.0 24 n.a. 3.66 ± 8.77 1.5 n.a. Huang et al., 2019
Puerarin 100 mg/kg
(SD rats n=6)
Intact 0.0021 ± 0.0001 14 0.0027 ± 0.0002 0.0005 ± 0.0001 0.6 6 Ouyang et al., 2012
Isoformononetin 10 mg/kg
(SD rats n=5)
Intact 2.98 ± 0.75 30 2.98 ± 0.75 1.00 ± 0.22 0.4 1.9 Raju et al., 2019
Equal-OH 1.0 mg/kg
(SD rats n=4)
Intact + conjugates 0.2 ± 0.1 8 n.a. 0.05 ± 0.02 0.5 n.a. Zhang et al., 2020
Glyceollin I 1.0 mg/kg
(SD rats n=4)
Intact + conjugates 8.5 ± 0.7 8 n.a. 1.9 ± 0.6 0.5 3.1 ibid.
Glyceollin III 1.0 mg/kg
(SD rats n=4)
Intact + conjugates 1.0 ± 0.2 8 n.a. 0.25 ± 0.05 0.5 4.7 ibid.
Flavonolignan
Silybin stereoisomer 2R 3R 10R 11R 200 mg/kg
(Wistar rats n=3)
Intact 0.97 6 n.a. 0.27 4.1 2 Marhol et al., 2015
Silybin stereoisomer 2R 3R 10R 11R 200 mg/kg
(Wistar rats n=3)
Intact + conjugates 7.32 6 n.a. 2.18 3.9 2.2 ibid.
Silybin stereoisomer 2R 3R 10S 11S 200 mg/kg
(Wistar rats n=3)
Intact 2.09 6 n.a. 0.95 1 1.4 ibid.
Silybin stereoisomer 2R 3R 10S 11S 200 mg/kg
(Wistar rats n=3)
Intact + conjugates 134.6 6 n.a. 30 2.6 2.9 ibid.
Xanthones
Mangiferin 38 mg/kg
(SD rats n=6)
Intact n.a. n.a. 1.65 ± 0.33 0.46 ± 0.18 2 1.4 Chang et al., 2018
Stilbenes
Resveratrol 15 mg/kg
(Wistar rats n=6)
Intact 1.23 ± 0.57 4 n.a. 0.88 ± 0.09 0.6 0.3 Peñalva et al., 2018
Resveratrol 40 mg/kg
(SD rats n=5)
Intact 2.47 ± 0.36 12 n.a. 2.42 ± 0.24 0.3 n.a. Sin et al., 2018
Resveratrol 50 mg/kg
(SD rats n=6)
Intact 8.31 ± 2.39 24 n.a. 1.68 ± 0.54 1.2 3.6 Qiu et al., 2017
Resveratrol 50 mg/kg
(SD rats n=6)
Intact 7 ± 2 12 7.1 ± 2.0 6.57 ± 1.55 0.3 1.5 Marier et al., 2002
Resveratrol 50 mg/kg
(SD rats n=6)
Intact + glucuronide 322 ± 57 12 325 ± 58 105 ± 32 0.4 1.6 ibid.
Resveratrol 60 mg/kg
(SD rats n=6)
Intact 9.59 ± 1.88 8 n.a. 3.08 ± 0.74 0.5 5.2 Liu et al., 2019
Resveratrol 100 mg/kg
(SD rats n=6)
Intact n.a. n.a. 23.4± 3.13 n.a. 0.17 1.97 ± 0.34 Liang et al., 2013
Resveratrol 150 mg/kg
(Kunming mice n=5)
Intact n.a. n.a. 5.11 ± 4.53 9.91 ± 5.66 0.2 n.a. Wang et al., 2021
Resveratrol 5.9 mg/kg
(pigs n=4)
Intact 30.64 ± 0.03 5 35.76 ± 0.04 15.96 ± 0.08 1 1.2 Azorin-Ortuno et al., 2010
Resveratrol 0.5 mg
(human n=10)
Intact n.a. n.a. 0.98 0.32 ± 0.16 0.8 2.9 Boocock et al., 2007
Resveratrol 1.0 mg
(human n=10)
Intact n.a. n.a. 2.39 ± 1.37 0.51 ± 0.38 0.8 8.9 ibid.
Resveratrol 2.5 mg
(human n=10)
Intact n.a. n.a. 3.45 ± 1.25 1.17 ± 0.65 1.4 4.2 ibid.
Resveratrol 5.0 mg
(human n=10)
Intact n.a. n.a. 5.78 ± 3.42 2.36 ± 1.71 1.5 8.5 ibid.
Resveratrol 1.36 mg
(human n=10)
Intact + conjugates 3.326 ± 0.47 96 n.a. 0.473 ± 0.117 2.4 ± 0.9 n.a. Tani et al., 2014
Resveratrol 25 mg
(human n=8)
Intact + conjugates 27.3 ± 3.0 (SE) 72 n.a. n.a. n.a. 9.2 Walle et al., 2004
Resveratrol 25 mg
(human n=8)
Intact 0.004 ± 0.002 3 n.a. 0.006 ± 0.003 1 2 Almeida et al., 2009
Resveratrol 50 mg
(human n=8)
Intact 0.019 ± 0.012 3 n.a. 0.029 ± 0.025 0.9 1.8 ibid.
Resveratrol 100 mg
(human n=8)
Intact 0.085 ± 0.074 3 n.a. 0.094 ± 0.106 1.3 1.1 ibid.
Resveratrol 150 mg
(human n=8)
Intact 0.140 ± 0.086 3 n.a. 0.109 ± 0.086 1.3 1.9 ibid.
Resveratrol 180 mg
(human n=6)
Intact 4.14± 0.81 (SE) 3 n.a. 2.3 ± 0.5 (SE) 1.9 2.1 Ianitti et al., 2020
Resveratrol-3-O-glucoside 75 mg/kg
(SD rats n=8)
Intact n.a. n.a. 3.20 ± 1.31 n.a. n.a. 1.6 Su et al., 2019
Resveratrol-3-O-glucoside 150 mg/kg
(SD rats n=8)
Intact n.a. n.a. 9.53 ± 3.66 n.a. n.a. 1.3 ibid.
Resveratrol-3-O-glucoside 300 mg/kg
(SD rats n=8)
Intact n.a. n.a. 19.52 ± 5.71 n.a. n.a. 1.3 ibid.
Curcuminoids
Curcumin 300 mg/kg
(SD rats n=5)
Intact 1.26 ± 0.94 24 1.44± 1.26 0.36 ± 0.54 4.13 ± 4.97 6.38 ± 4.65 Yu et al., 2019
Curcumin 340 mg/kg
(Wistar rats n=3)
Intact 0.22 2 n.a. 0.0065 ± 0.0045 0.5 n.a. Marczylo et al., 2007
Curcumin 340 mg/kg
(Wistar rats n=3)
Glucuronide 9.08 2 n.a. 0.225 ± 0.0006 0.5 n.a. ibid.
Circumin 340 mg/kg
(Wistar rats n=3)
Sulfate 0.7 2 n.a. 0.007± 0.0115 1 n.a. ibid.
Phenolic acids
Ferulic acid 50 mg/kg (SD rats n=6) Intact 0.0053 ± 0.0013 6 0.0057 ± 0.0012 0.0038 ± 0.0007 0.2 3.8 Ouyang et al., 2012
Caffeic acid 10 mg/kg
(SD rats n=6)
Intact 1.68 ± 0.14 12 1.97 ± 0.18 1.39 ± 0.21 0.3 2.1 Wang et al., 2014
Caffeic acid 17 mg/kg
(SD rats n=6)
Intact 4.37 ± 0.45 12 4.56 ± 0.48 2.50 ± 0.08 0.3 1.3 Shi et al., 2019
Caffeic acid 20 mg/kg
(SD rats n=6)
Intact 77.817 ± 42.481 12 77.88 ± 42.47 43.69 ± 13.77 0.3 1.3 Wang et al., 2015
Caffeic acid 18 mg/kg
(Wistar rats)
Intact 1.82 1.5 n.a. 2.27 ± 0.16 (SE) 0.17 0.57 Konishi et al., 2005
Caffeic acid 18 mg/kg
(Wistar rats)
Conjugates 26.9 1.5 n.a. 30.30 ± 2.48 0.3 n.a. ibid.
Syringic acid 30 mg/kg
(SD rats n=3)
Intact 295.9 ± 121.8 8 298.4 ± 124.4 165.3 ± 36.4 0.7 1.2 Zhou et al., 2012
Salicylic acid 30 mg/kg
(SD rats n=3)
Intact 1978.7 ± 173.8 8 4141.3 ± 614.5 439.3 ± 33.8 0.7 8.9 ibid.
p-Coumaric acid 2.35 mg/kg
(Wistar rats n=6)
Intact 13.95 ± 3.35 6 14.13 ± 3.47 19.19 ± 2.98 0.2 1.3 Cui et al., 2010

Data represent the mean ± standard deviation (SD), except for the representation of SE (standard error); n.a., not available

Tissue accumulation of polyphenols

Polyphenol-induced health benefits, such as improved insulin sensitivity (Park et al., 2012), vasorelaxation (Lorenz et al., 2009), and anti-atherosclerosis (Loke et al., 2010) indicate their local action or accumulation in the organs. However, studies that report tissue accumulation of polyphenols in the circulatory system are rare. Table 3 summarizes the amount of tissue accumulation of polyphenols in organs, including the liver, the kidneys, the heart, the lung, and the muscle. Although the available data on the tissue accumulation kinetics of polyphenols in literature were limited, it appears that they can be distributed and can accumulate in the organs rapidly (< 1 h) after absorption into the bloodstream. The accumulation of the four polyphenols in different organs listed in Table 3 occurs preferably in the following order: the kidney > the liver > the lung > the heart > the muscle. However, further accumulation studies are needed to clarify the pharmacokinetics of polyphenol accumulation in relation to polyphenol structure and to obtain insights on the absorbability by considering the total amount of absorption in the blood and the organs. In our unpublished study, > 80% of hydrophobic isoflavone metabolites are preferentially distributed into the organs, while > 80% of the parent isoflavones are still present in the blood. Table 3 also shows the effect of tissue accumulation of conjugated polyphenols. The possible tissue accumulation of conjugated polyphenols has also been reported by other researchers (Chang et al., 2000; Soucy et al., 2006; Urpi-Sarda et al., 2008), in which glucuronided and sulfated conjugates of genistein were detected in the placenta of female rats (Soucy et al., 2006).

Table 3. Pharmacokinetics of polyphenols in different tissues after a single oral administration in Sprague-Dawleyrats in literature
Compound Dose
(mg/kg)
Metabolite(s) Cmax (µmol/L or nmol/mL or nmol/g-tissue)
(intact + conjugates)
Reference
Plasma Liver Kidney Heart Lung Muscle
Ferulic acid 3.3 Intact 5.73
(Tmax, 0.66 h)
1.62
(n.a.)
12.66
(n.a.)
0.21
(n.a.)
0.19
(n.a.)
n.a. Chen et al., 2021
Naringin 42 Intact 0.309
(0.5 h)
12.2
(0.25 h)
13.2
(0.25 h)
0.363
(0.25 h)
188
(1 h)
0.618
(0.25 h)
Zeng et al., 2019
Naringin 42 Naringenin
Naringenin-Glucuronide
Naringenin-Sulfate
Naringenin-Glucuronide/Sulfate
12.9
(0.25 h)
78.7
(6 h)
46.7
(6 h)
5.24
(6 h)
9.32
(1 h)
1.07
(6 h)
ibid.
Daidzein 1.64 Equol
cis-4-OH-Equol
Dihydrodaidzein
Tetrahydrodaidzein
0.38
(0.89 h)
0.43
(n.a.)
0.25
(n.a.)
0.022
(n.a.)
0.18
(n.a.)
n.a. Prasain et al., 2004; Chen et al., 2018
Resveratrol 50 Sulfate
Glucuronide
7
(2 h)
1.1
(2 h)
4
(2 h)
0.1
(2 h)
0.4
(2 h)
n.a. El-Moshen et al., 2006
Pelargonidin 50 Glucuronide
Aglycone
n.a. 0.27 0.65 Not
detected
0.24 n.a. ibid.
Dihydrimyrcetin 100 Intact n.a. 5.4
(0.25 h)
4.91
(0.25 h)
12
(0.25 h)
17.1
(0.25 h)
n.a. Fan et al., 2017
Neochrogenic
acid
5.09 Intact n.a. 0.72
(0.25 h)
0.6
(0.22 h)
0.44
(0.22 h)
0.53
(0.25 h)
n.a. Li, S. et al., 2021
Chlorogenic acid 6.88 Intact n.a. 0.85
(0.25 h)
0.81
(0.25 h)
0.56
(0.21 h)
0.67
(0.25 h)
n.a. ibid.
Cryptochlorogenic
acid
3.24 Intact n.a. 0.89
(0.24 h)
0.85
(0.25 h)
0.61
(0.25 h)
0.81
(0.25 h)
n.a. ibid.
Caffeic acid 3.01 Intact n.a. 1.93
(0.22 h)
1.85
(0.25 h)
1.48
(0.25 h)
1.67
(0.25 h)
n.a. ibid.
Resveratrol 100 Intact n.a. 3.14
(0.25 h)
2.53
(0.25 h)
2.25
(0.25 h)
1.66
(0.25 h)
n.a. Liang et al., 2013
Catechin 543 Intact 11.8
(0.38 h)
59
(0.5 h)
n.a. 6.05 12.8 n.a. Wang et al., 2019
Epicatechin 34 Intact 1.42
(0.46 h)
8.77
(0.25 h)
n.a. 2.48
(0.5 h)
1.67
(0.25 h)
n.a. ibid.

n.a. indicates not available

Organic anion transporters (MCT, OAT1, and OATP1B1) may be involved in the intracellular incorporation of intact and conjugated polyphenols, but their tissue incorporation routes and physiological action(s) in the accumulated organs are not well understood. Thus far, reports have shown that the sulfation of polyphenols induces glucose transporter 4 (GLUT4) translocation (Houghton et al., 2019) and anti-hypertensive effect (Van Rymenant et al., 2017), whereas glucuronided forms of polyphenols promote NO production (Serreli et al., 2021) and reduce hepatocyte fat accumulation (Trepiana et al., 2020). These findings allow us to investigate the physiological functions of conjugated polyphenols as their underlying inter-/intracellular mechanisms remain unexplored.

Non-absorbable polyphenols

Spinosin, a flavonoid glycoside that performs sedation and hypnosis actions, was incorporated mainly via MCT and partly SGLT1, together with recognition by P-gp-efflux route (Meng et al., 2016). In contrast, tomatoside A, a steroidal saponin from tomato seed (Li et al., 2018), as well as condensed catechins, theaflavins (Takeda et al., 2013), could not cross the intestinal membrane (Fig. 2). However, the saponin could reduce glucose transport by suppressing the expression of GLUT2. In in vitro transport experiments using Caco-2 cells, which are derived from human colon carcinoma, the saponin could be incorporated into cells via ASBT and then pumped out to the apical side through the MRP2 efflux route. During the influx/efflux transportation process, intracellular protein kinase C (PKC) was activated to inhibit GLUT2 expression (Li et al., 2018). For the intestinal transportation of theaflavins as non-absorbable compounds, like tomato saponin, more evidence on transportation behavior was visually obtained using MALDI-MS imaging technique, which suggested that theaflavins were incorporated into rat intestinal cells through both MCT and OATP transporters (Fig. 2) (Nguyen et al., 2019). Non-targeted MALDI-MS analysis also revealed that there was an efflux of non-absorbable theaflavins back to the gut via the ABC transporters, like other polyphenols (Chan et al., 2007), without any MS detection of metabolites, indicating that the incorporated theaflavins are stable or less susceptible to phase I/II metabolism. Although the physiological roles of non-absorbable theaflavins are not fully understood, the influx/efflux transportation dynamics may result in the activation of AMP-activated protein kinase (AMPK), affecting the expression of intestinal absorption pathways, such as carrier-mediated and paracellular passive pathways (Peng et al., 2009; Pieri et al., 2010; Sopjani et al., 2010). Previous reports revealed that theaflavins caused the suppression of PepT1 expression (Takeda et al., 2013), enhancement of intestinal membrane barrier via the expression of TJ-related proteins, including occludin, claudin-1, and zonula occluden (ZO)-1 (Park et al., 2015), suppression of SGLT1 expression (Li et al., 2020), and stimulation of incretin (glucagon-like peptide-1, GLP-1, and glucose-dependent insulinotropic polypeptide, GIP) secretion (Li, B. et al., 2021). The activation of AMPK requires the phosphorylation of Thr-172 at the loops of α1 and α2 subunits through activation of upstream kinases, including liver kinase B1 (LKB1), Ca2+/calmodulin-dependent protein kinase kinase (CaMKK), or transforming growth factor-ß-activated kinase-1 (TAK-1) (Hardie, 2008; Kim and He, 2013). However, the upstream signaling mechanism(s) that are involved in AMPK activation during the influx/efflux transportation process of theaflavins remain unclear.

Fig. 2.

Visualized absorption behavior of steroidal saponin (tomatoside A) and theaflavins across rat intestinal membrane through matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) imaging

Perspective

Polyphenols have diverse physiological potentials for maintaining homeostasis. However, these compounds are susceptible to metabolic phase I/II reactions during intestinal absorption and form a variety of conjugates. Although in this review, the bioavailability of major polyphenols was discussed, little is known about the absorbability of other naturally occurring polyphenols. Considering the in vivo findings that polyphenols can provide diverse health benefits, more research on tissue distribution is required to explore the effects of polyphenols. Furthermore, the combinatory effect of polyphenols on contaminated food compounds should also be taken into consideration while developing strategies for polyphenol-derived health promotion (Wendling et al., 2015).

Acknowledgements    The author appreciates the contributions of Dr. A.M. Nectoux, Ms. C. Abe, and Ms. A. Soma in Kyushu University in this study. This work was supported by JSPS KAKENHI Grant Number JP21H05006.

Conflict of interest    There are no conflicts of interest to declare.

Abbreviations
ABC

ATP binding cassette

ADME

absorption/distribution/metabolism/excretion

AMPK

AMP-activated protein kinase

ASBT

apical sodium dependent-bile acid transporter

AUC

area under the curve

BCRP

breast cancer resistance protein

CaMKK

calmodulin-dependent protein kinase kinase

CVD

cardiovascular disease

ECG

epicatechin-3-O-gallate

EGCG

epigallocatechin-3-O-gallate

GIP

glucose-dependent insulinotropic polypeptide

GLP-1

glucagon-like peptide-1

GLUT

glucose transporter

LKB1

liver kinase B1

MALDI

matrix-assisted laser desorption/ionization

MCTs

monocarboxylate transporters

MRP

multidrug resistance protein

MS

mass spectrometry

NO

nitrogen monoxide

NTs

nucleoside transporters

OATP

organic anion transporting polypeptides

PepT1

peptide transporter 1

P-gp

P-glycoprotein

PKC

protein kinase C

SGLT-1

sodium-dependent glucose transporter

TAK-1

transforming growth factor-ß-activated kinase-1

TJ

tight junction

ZO-1

zonula occluden-1

References
 
© 2022 by Japanese Society for Food Science and Technology
feedback
Top