先進17カ国の株式,債券,通貨市場(計42市場)の月次リターンは,自己相関,不均一分散,歪み,尖りといった非定常性もしくは非正規性を持つ.直交3囚子モデルは,これらの非定常性や非正規性をうまく分類できる.AR(1)=GARCH(1, 1)モデルは各因子の非定常性をほぼ説明できるが,通貨独自囚子の非止規性と共辿囚子に集約された株式市場の非正規性は説明しきれない.これらの非正規性を表現するには,よリ一般的な動学モデルが必要である.さらに,こうした「因子構造に適当な動学構造を組み合わせたモデル」を外挿テストすると,定常正規分布モデルに対して安定的かつ大幅なリターン予測(同時分布の事前推定)能力の改善か認められる.ただし,この改善は,独自囚子の非定常性を考慮する部分が大きい.また,因+構造を仮定することで2段階推定の効率性低下を抑制できる点もこのモデルの長所といえる.なお,ARMAやGARCHのようなパラメトリゼーションにおいては,パラメータの有意性やモデルの効率性に過大評価の可能性が生じるため注意が必要である.