ヒューマンインタフェース学会論文誌
Online ISSN : 2186-8271
Print ISSN : 1344-7262
ISSN-L : 1344-7262
一般論文
眼電位ならびに頭部運動関連パラメータを用いたドライバーのメンタルワークロード評価
森島 圭祐茅原 崇徳乙川 友佑西内 信之山中 仁寛
著者情報
ジャーナル フリー

2019 年 21 巻 1 号 p. 121-130

詳細
抄録
The aim of this study is to propose a method of evaluating for level of driver’s mental workload by using machine learning methods. In order to examine parameters related to visual behavior effective for evaluating driver's mental workload in driving, we measured EOG and head movements during simulated driving. In the experiment, we attempted to distinguish the "low mental workload" condition from "high mental workload" condition by using various machine learning methods, such as Adaboost, RBF networks and SVM on data related to EOG and head movements. Through cross-validation using the data from one participant as test data and data from the others as training data, the Adaboost method was determined to have the highest correct discrimination rate (over 85%). These results suggest the possibility of evaluating mental workload while driving.
著者関連情報
© 2019 ヒューマンインタフェース学会
前の記事 次の記事
feedback
Top