電気学会論文誌C(電子・情報・システム部門誌)
Online ISSN : 1348-8155
Print ISSN : 0385-4221
ISSN-L : 0385-4221
論文
ニューラルネットワークによる2次形制約下での
静的逆最適化問題の解法
章 宏石川 眞澄
著者情報
ジャーナル フリー

2003 年 123 巻 10 号 p. 1901-1907

詳細
抄録
In this paper we propose a novel approach to static inverse optimization problems with quadratic constraints by learning of neural networks for interpreting real-world data. This proposal has an advantage in that marginal rates of substitution change smoothly in contrast to the case of static inverse optimization with linear constraints. Based on this characteristic, more accurate interpretation of data by static inverse optimization becomes possible. To evaluate the effectiveness of the proposed method, we solve static inverse optimization problems with quadratic constraints using artificial data. We also propose a method to generate quadratic constraints from given data.
著者関連情報
© 電気学会 2003
前の記事 次の記事
feedback
Top