電気学会論文誌C(電子・情報・システム部門誌)
Online ISSN : 1348-8155
Print ISSN : 0385-4221
ISSN-L : 0385-4221
論文
屋外からの家庭内電気機器消費電力推定における
機械学習手法の性能評価
村田 博士小野田 崇由本 勝久中野 幸夫
著者情報
ジャーナル フリー

2003 年 123 巻 7 号 p. 1350-1355

詳細
抄録
A non-intrusive monitoring system estimates the behavior of individual electric appliances from the measurement of the total household load demand curve. The total load demand curve is measured at the entrance of the power line into the house. The power consumption of individual appliances can be estimated using several machine learning techniques by analyzing the characteristic frequency contents from the load curve of the hosehold. In this paper, we present results of applying several regression methods such as multi-layered perceptrons (MLP), radial basis function networks (RBFN) and Support Vector regressors (SVR) to estimate the power consumption of an air conditioner. Our experiments show RBFN can achieve the best accuracy for the non-intrusive monitoring system.
著者関連情報
© 電気学会 2003
前の記事 次の記事
feedback
Top