電気学会論文誌C(電子・情報・システム部門誌)
Online ISSN : 1348-8155
Print ISSN : 0385-4221
ISSN-L : 0385-4221
<ソフトウェア・情報処理>
Comparing Learning Classifier System and Reinforcement Learning with Function Approximation
Atsushi WadaKeiki TakadamaKatsunori ShimoharaOsamu Katai
著者情報
ジャーナル フリー

2004 年 124 巻 10 号 p. 2034-2039

詳細
抄録
As a first step toward an analysis of the capabilities of adaptive systems, including learning and evolution, we focus on the Learning Classifier System (LCS) and compare it with Reinforcement Learning (RL) that adopts the Function Approximation (FA) method. An analysis of this comparison found an equivalence of learning processes between both the two models, which brings the mathematical framework of the LCS’s learning process to the level of RL with FA. Our analysis also clarified the limitations of the results.
著者関連情報
© 2004 by the Institute of Electrical Engineers of Japan
前の記事 次の記事
feedback
Top