電気学会論文誌C(電子・情報・システム部門誌)
Online ISSN : 1348-8155
Print ISSN : 0385-4221
ISSN-L : 0385-4221
<ソフトコンピューティング・学習>
PSOとDEによるハイブリッド手法の計算特性
村中 健一相吉 英太郎
著者情報
ジャーナル フリー

2012 年 132 巻 7 号 p. 1128-1135

詳細
抄録
In this paper, we present a new type of hybrid methods for global optimization with Particle Swarm Optimization (PSO) and Differential Evolution (DE), which have attracted interests as heuristic and global optimization methods recently. Concretely, “p-best solutions” as the targets of PSO's particles are actuated by DE's evolutional mechanism in order to promote PSO's global searching ability. The presented hybrid method works effectively because PSO acts as a local optimizer and DE plays a role as a global optimizer. To evaluate performance of the hybridization, our method is applied to some benchmarks and is compared with the separated PSO and DE. Through computer simulations, it is certified that the proposed hybrid method performs fairy better than their separated algorithm.
著者関連情報
© 2012 電気学会
前の記事 次の記事
feedback
Top