電気学会論文誌C(電子・情報・システム部門誌)
Online ISSN : 1348-8155
Print ISSN : 0385-4221
ISSN-L : 0385-4221
<音声画像処理・認識>
Efficient Parameter Optimization by Applying Estimation Error Reduction to Design of Experiments for Image Processing
Yohei MinekawaKenji NakahiraRyo NakagakiYuji Takagi
著者情報
ジャーナル フリー

2013 年 133 巻 1 号 p. 111-116

詳細
抄録
An efficient method for optimizing the parameters used for image processing is described that applies estimation error reduction to design of experiments (DOE). The traditional DOE optimization method is used to estimate the evaluation scores of all parameter sets and to rank them using a small number of actual scores. Because the search for the optimal parameter set is done in the order of the estimated scores for all parameter sets, the ranking accuracy, which strongly depends on the estimation error, is important. We introduce a function for reducing the estimation errors for the higher ranked parameter sets. The proposed parameter optimization method was evaluated by applying it to parameter optimization for industrial image defect area extraction. Evaluation using three datasets showed that the parameter sets selected by the proposed method had close to the highest actual score and that the number of image processings was 1/57 that of a full search procedure.
著者関連情報
© 2013 by the Institute of Electrical Engineers of Japan
前の記事 次の記事
feedback
Top