電気学会論文誌C(電子・情報・システム部門誌)
Online ISSN : 1348-8155
Print ISSN : 0385-4221
ISSN-L : 0385-4221
<ソフトコンピューティング・学習>
追跡問題におけるゴールデンクロスを利用した切り換えQ学習
伊木美 太輔松本 啓之亮森 直樹
著者情報
ジャーナル フリー

2014 年 134 巻 9 号 p. 1318-1324

詳細
抄録
Recently, applications of multiagent systems are expected from the view point of the parallel and distributed processing of systems. Reinforcement learning attracts attention as an implementing method of multiagent systems. However, there is a problem that the more the number of agents to deal with increases, the slower the speed of learning becomes. To solve this problem, we propose a new reinforcement learning method that can learn quickly and reduce amount of memory. It tries to increase efficiency of the learning on a hunter game by paying attention to partial states of two agents among a large number of agents. In addition, the proposed method employs a switching algorithm and detects automatically a switching time by using a special index called golden cross.
著者関連情報
© 2014 電気学会
前の記事 次の記事
feedback
Top