電気学会論文誌C(電子・情報・システム部門誌)
Online ISSN : 1348-8155
Print ISSN : 0385-4221
ISSN-L : 0385-4221
<ソフトコンピューティング・学習>
ノイズを含む多目的最適化問題に対する最悪状況の予測に基づく差分進化の適用
田川 聖治原田 翔一
著者情報
ジャーナル フリー

2016 年 136 巻 2 号 p. 189-198

詳細
抄録
A new multi-objective optimization problem in presence of noise is formulated and called Multi-Noisy-Hard-objective Optimization Problem (MNHOP). Since considering the worst case performance is important in many real-world optimization problems, each solution of MNHOP is evaluated based on the upper bounds of noisy objective functions' values predicted statistically from multiple samples. Then an Evolutionary Multi-objective Optimization Algorithm (EMOA) based on Differential Evolution is applied to MNHOP. Three sample saving techniques, namely U-cut, C-cut, and re-sampling, are proposed and introduced into the EMOA for allocating its computing budget only to promising solutions. Finally, the effects of those techniques are examined through numerical experiments.
著者関連情報
© 2016 電気学会
前の記事 次の記事
feedback
Top