電気学会論文誌C(電子・情報・システム部門誌)
Online ISSN : 1348-8155
Print ISSN : 0385-4221
ISSN-L : 0385-4221
<ソフトコンピューティング・学習>
深層学習と線形モデルを併用した時系列予測手法
平田 貴臣呉本 尭大林 正直間普 真吾小林 邦和
著者情報
ジャーナル フリー

2016 年 136 巻 3 号 p. 348-356

詳細
抄録
Since 1970s, linear models such as autoregressive (AR), moving average (MA), autoregressive integrated moving average (ARIMA), etc. have been popular for time series data analyze and prediction. Meanwhile, artificial neural networks (ANNs), inspired by connectionism bio-informatics, have been showing their powerful abilities of function approximation, pattern recognition, dimensionality reduction, and so on since 1980s. Recently, deep belief nets (DBNs) which use multiple restricted Boltzmann machines (RBMs) and multi-layered perceptron (MLP) are proposed as time series predictors. In this study, a hybrid prediction method using DBNs and ARIMA is proposed. The effectiveness of the proposed method was confirmed by the experiments using CATS benchmark data and chaotic time series data.
著者関連情報
© 2016 電気学会
前の記事 次の記事
feedback
Top