電気学会論文誌C(電子・情報・システム部門誌)
Online ISSN : 1348-8155
Print ISSN : 0385-4221
ISSN-L : 0385-4221
冗長な隠れ層・隠れユニットの削除による階層型ニューラルネットのコンパクト構造化
増田 達也佐藤 幸史池谷 浩彦藤井 善行
著者情報
ジャーナル フリー

1994 年 114 巻 11 号 p. 1194-1200

詳細
抄録
When we apply a hierarchical neural network based on the back-propagation algorithm to a particular problem, we must determine beforehand the suitable size of network for the problem. But it is a very difficult problem. Too small a network will not learn at all, while too large a network will be inefficient and worsen its generalization ability due to overfitting.
In order to solve this problem, in this paper we propose a compact structuring method based on learning with a large size network and then compacting gradually the network by eliminating extra hidden layers and units. The result is a small and efficient network that performs better than the original. Also we demonstrate the effectiveness of this method by appling it to an identification problem of logic function.
著者関連情報
© 電気学会
前の記事 次の記事
feedback
Top