電気学会論文誌C(電子・情報・システム部門誌)
Online ISSN : 1348-8155
Print ISSN : 0385-4221
ISSN-L : 0385-4221
砂時計型ニューラルネットワークを用いた雑音除去フィルタの構成
吉村 宏紀清水 忠昭井須 尚紀菅田 一博
著者情報
ジャーナル フリー

1997 年 117 巻 10 号 p. 1498-1505

詳細
抄録
The multilayer perceptron called Sandglass type Neural Network (SNN) has the same number of units in input layer and output layer and has less units in hidden layer than units both in input layer and output layer. In this paper we clarified the properties of a noise reduction filter using the SNN. The properties were derived basically by use of the result that the output signal of the SNN could be given by Karhunen-Loeve expansion of an input data matrix. Here, we evaluated the improvement value of signal to noise ratio for the optimum number of hidden units. The noise reduction filter was assured to be effective and stable by the computer experiments using sinusoidal signal corrupted by white noise.
著者関連情報
© 電気学会
前の記事 次の記事
feedback
Top