電気学会論文誌C(電子・情報・システム部門誌)
Online ISSN : 1348-8155
Print ISSN : 0385-4221
ISSN-L : 0385-4221
適応的探索法を用いた強化学習
梅迫 公輔大林 正直小林 邦和
著者情報
ジャーナル フリー

2002 年 122 巻 3 号 p. 374-380

詳細
抄録
We propose an adaptive probability density function (PDF) to select an effective action on reinforcement learning (RL). The uniform distribution function and the normal distribution function of an action are often used to select an action. When these fuctions are used, however, the information of search direction is net considered. The proposed method utilizing the information of it enables RL to reduce the number of trials, which is needed to real environment learning. Furthermore, the proposed method can be applied easily to various methods of RL, for example, actor-critic, stochastic gradient ascent method. The performance of our proposed method is demonstrated by computer simulations.
著者関連情報
© 電気学会
前の記事 次の記事
feedback
Top