IEEJ Journal of Industry Applications
Online ISSN : 2187-1108
Print ISSN : 2187-1094
ISSN-L : 2187-1094

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Gaussian Processes for Advanced Motion Control
Maurice PootJim PortegiesNoud MoorenMax van HarenMax van MeerTom Oomen
著者情報
ジャーナル フリー 早期公開

論文ID: 21011492

この記事には本公開記事があります。
詳細
抄録

Machine learning techniques, including Gaussian processes (GPs), are expected to play a significant role in meeting speed, accuracy, and functionality requirements in future data-intensive mechatronic systems. This paper aims to reveal the potential of GPs for motion control applications. Successful applications of GPs for feedforward and learning control, including the identification and learning for noncausal feedforward, position-dependent snap feedforward, nonlinear feedforward, and GP-based spatial repetitive control, are outlined. Experimental results on various systems, including a desktop printer, wirebonder, and substrate carrier, confirmed that data-based learning using GPs can significantly improve the accuracy of mechatronic systems.

著者関連情報
© 2022 The Institute of Electrical Engineers of Japan
feedback
Top