IEEJ Journal of Industry Applications
Online ISSN : 2187-1108
Print ISSN : 2187-1094
ISSN-L : 2187-1094

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Autonomous Resonant Frequency Tuner for a 6.78MHz Inductive Coupling Wireless Power Transfer System to Stably Maximize Repeater Current
Akihiro KonishiKazuhiro UmetaniMasataka IshiharaEiji Hiraki
著者情報
ジャーナル フリー 早期公開

論文ID: 22010814

この記事には本公開記事があります。
詳細
抄録

Recently, the resonant inductive coupling wireless power transfer (RIC-WPT) technique is being widely used to charge small IoT devices dispersed in a wide area, e.g., an office desk and warehouse rack. In this application, the repeater is utilized to expand the chargeable area without an additional AC power source. The repeater comprises a LC resonator commonly with a high-quality factor to induce large current in the repeater coil. However, this causes the problem that the repeater performance is highly susceptible to the variation in its resonant frequency due to the manufacturing tolerance of coil inductance and resonant capacitance as well as the variation of the magnetic coupling between the transmitter and repeater coils. To solve this problem, a previous study has proposed a concept of the autonomous resonant frequency tuning circuit to stably maximize repeater coil current, although this study implemented a part of this control system as a practical circuit. This paper aims to develop a complete autonomous resonant frequency tuning circuit that implements the aforementioned concept. The proposed circuit adjusts the resonant frequencies of the transmitter and repeater by utilizing the Automatic Tuning Assist Circuits. These frequencies are optimized using the infrared wireless signal communication from the transmitter to the repeater. Along with the operating principle of the proposed circuit, this study presents detailed circuit design as well as the experimental results, which verified the stable autonomous maximization of the repeater coil current against the variation in the resonant frequency of the repeater resonator.

著者関連情報
© 2022 The Institute of Electrical Engineers of Japan
feedback
Top