電気学会論文誌E(センサ・マイクロマシン部門誌)
Online ISSN : 1347-5525
Print ISSN : 1341-8939
ISSN-L : 1341-8939
論文
島状金薄膜におけるプラズモン共鳴を用いた光学的感圧膜の開発
竹林 永人池沢 聡岩見 健太郎
著者情報
ジャーナル 認証あり

2020 年 140 巻 12 号 p. 374-379

詳細
抄録

In this paper, an optical pressure-sensitive membrane based on plasmon resonance absorption has been designed, fabricated, and demonstrated. The membrane utilizes plasmon resonance on a gold island film embedded in a polydimethylsiloxane (PDMS) layers, and the shift of the resonant wavelength was used as an indicator of pressure-induced strain of the membrane. The membrane with total thickness of 100 µm were prepared with spin-coating of PDMS and vacuum evaporation of gold island film with the nominal thickness of 10 nm. Pressure sensitivity of the fabricated membrane was demonstrated from the measurement of absorbance spectra and the maximum sensitivity of 0.35 nm/kPa was achieved by applying pressure up to 35 kPa. Plasmon resonance mode attributing to the pressure sensitivity has been analyzed through comparison between electromagnetic simulation and membrane stretching test. From the stretching test, red shifts of the resonant wavelength were obtained for both parallel and perpendicular polarizations to the tensile direction with the sensitivities of 0.372 and 0.134 nm/%, respectively. From the electromagnetic simulation, these red shifts can be attributed to both gap-mode and deformation-mode resonances of the gold island film.

著者関連情報
© 2020 電気学会
前の記事 次の記事
feedback
Top